Volume 6 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Feiyu Tian, Ling Chen, Xinwu Xu. Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 152-159. doi: 10.1016/j.jobab.2021.02.007
Citation: Feiyu Tian, Ling Chen, Xinwu Xu. Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 152-159. doi: 10.1016/j.jobab.2021.02.007

Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber

doi: 10.1016/j.jobab.2021.02.007
More Information
  • Corresponding author: College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China. E-mail address: xucarpenter@njfu.edu.com (X. Xu)
  • Received Date: 2020-06-20
  • Accepted Date: 2020-08-25
  • Rev Recd Date: 2020-08-18
  • Available Online: 2021-02-26
  • Publish Date: 2021-05-01
  • Application of out-of-service rubber from a variety of sources is of both environment-protecting and resource-saving importance. To that end, recycled tire rubber was utilized as a filler to fabricate wood-high density polyethylene (HDPE) composite with enhanced toughening performance using the injection procedure in this work. Dosages of rubber powders were 0, 5, 10, and 15wt% based on the overall weight of poplar wood flour and HDPE (HDPE: wood flour = 70꞉30). The injection-fabricated composites were subjected to a four-cycle repetitive compressing loadings (0–3 kN) and dynamical mechanical analysis (DMA, room temperature to 150 ℃, in the dual cantilever mode). It was found that the rubber-filled materials exhibit advantageous energy absorption performance compared to wood-HDPE composites under repetitive compressions. The rubber-filled wood-HDPE composites are thermomechanically labile in an environment with raised temperature. The HDPE matrix substance occupies the predominant role in thermally yielding of the overall composite, typically in the temperature range of 50–75 ℃ resulting in a loss modulus peak. Up to 130–150 ℃, all the composites fully loses their moduli with loss factor (Tanδ) reaching its peak values of 0.30–0.38. To conclude, rubber-filled wood-HDPE is a qualified material applicable in proper temperature range.

     

  • loading
  • Ayrilmis, N., Buyuksari, U., Avci, E., 2009a. Utilization of waste tire rubber in manufacture of oriented strandboard. Waste Manag. 29, 2553–2557. doi: 10.1016/j.wasman.2009.05.017
    Ayrilmis, N., Buyuksari, U., Avci, E., 2009b. Utilization of waste tire rubber in the manufacturing of particleboard. Mater. Manuf. Process. 24, 688–692. doi: 10.1080/10426910902769376
    Bai, W., 2009. New Application of Crystalline Cellulose in Rubber Composites. Oregon: Oregon State University.
    Chang, F.C., Kadla, J.F., Lam, F., 2016. The effects of wood flour content and coupling agent on the dynamic mechanical and relaxation properties of wood-plastic composites. Eur. J. Wood Wood Prod. 74, 23–30. doi: 10.1007/s00107-015-0962-5
    Chen, L., 2015. Research On Manufacturing and Properties of wood/rubber/HDPE Composites. Nanjing: Nanjing Forestry University.
    Chen, L., Han, J., Huang, R., Xu, X., 2017. Thermal decomposition properties of recycled tire rubber filled wood/high density polyethylene composites. Wood Res. 62, 701–714.
    Chowdhury, M.J.A., Wolcott, M.P., 2007. Compatibilizer selection to improve mechanical and moisture properties of extruded wood-HDPE composites. For. Prod. J. 57, 46–53. http://europepmc.org/abstract/AGR/IND43957367
    Clemons, C., 2002. Wood-plastic composites in the United States: the interfacing of two industries. For. Prod. J. 52, 10–18. http://europepmc.org/abstract/agr/ind23296749
    Kim, D.Y., Nishiyama, Y., Wada, M., Kuga, S., Okano, T., 2001. Thermal decomposition of cellulose crystallites in wood. Holzforschung55, 521–524. doi: 10.1515/hf.2001.084
    Lu, J.Z., Wu, Q.L., McNabb, H.S., 2000. Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci. . 32: 88–104. http://www.cabdirect.org/abstracts/20000607095.html
    Poletto, M., Zeni, M., Zattera, A.J., 2012. Dynamic mechanical analysis of recycled polystyrene composites reinforced with wood flour. J. Appl. Polym. Sci. 125, 935–942. doi: 10.1002/app.36291
    Samal, S.K., Mohanty, S., Nayak, S.K., 2009. Polypropylene—Bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J. Reinf. Plast. Compos. 28, 2729–2747. doi: 10.1177/0731684408093451
    Son, J., Gardner, D.J., O'Neill, S., Metaxas, C., 2003. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. J. Appl. Polym. Sci. 89, 1638–1644. doi: 10.1002/app.12372
    Song, X., 1995. Wood Fiber and Recycled Tire Rubber Hybrid Composites. Michigan: Michigan Technological University.
    Sun, W., 2009. Study On Wood-Rubber Composites and Application in Soundproof Flooring. Beijing: Beijing Forestry University.
    Tajvidi, M., Falk, R.H., Hermanson, J.C., Felton, C., 2003. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis. Seventh International Conference on Woodfiber-Plastic Composites. Forest Product Society, Madison, WI, 19–20 May 2007, 187–195.
    Tajvidi, M., Motie, N., Rassam, G., Falk, R.H., Felton, C., 2010. Mechanical performance of hemp fiber polypropylene composites at different operating temperatures. J. Reinf. Plast. Compos. 29, 664–674. doi: 10.1177/0731684408100266
    Xie, Z., 2005. A multi-functional environmental adhesive and its manufacturing method. Patent No. CN1563238A (in Chinese).
    Xu, X.W., Chen, L., Han, J.Q., Zhan, X.X., 2019. Influence of silane/MaPE dual coupling agents on the rheological and mechanical properties of sawdust/rubber/HDPE composites. Holzforschung73, 605–611. doi: 10.1080/13696998.2019.1600525
    Xu, X.W., Wang, H.X., Sun, Y., Han, J.Q., Huang, R.Z., 2018. Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. J. Clean. Prod. 187, 215–221. doi: 10.1016/j.jclepro.2018.03.174
    You, Z.P., Li, D.G., 2013. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater. Lett. 112, 197–199 doi: 10.1016/j.matlet.2013.09.013
    Zhao, J., Wang, X., Chang, J., Zheng, K., 2008. Optimization of processing variables in wood-rubber composite panel manufacturing technology. Bioresour. Technol. 99, 2384–2391. doi: 10.1016/j.biortech.2007.05.031
    Zhao, J., Wang, X.M., Chang, J.M., Yao, Y., Cui, Q., 2010. Sound insulation property of wood-waste tire rubber composite. Compos. Sci. Technol. 70, 2033–2038. doi: 10.1016/j.compscitech.2010.03.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (509) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return