Turn off MathJax
Article Contents
Pavan Kumar Dara, Anjana Geetha, Upasana Mohanty, Mahadevan Raghavankutty, Suseela Mathew, Ravishankar Chandragiri Nagarajarao, Anandan Rangasamy. Extraction and characterization of myofibrillar proteins from different meat sources: A comparative study[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.004
Citation: Pavan Kumar Dara, Anjana Geetha, Upasana Mohanty, Mahadevan Raghavankutty, Suseela Mathew, Ravishankar Chandragiri Nagarajarao, Anandan Rangasamy. Extraction and characterization of myofibrillar proteins from different meat sources: A comparative study[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.004

Extraction and characterization of myofibrillar proteins from different meat sources: A comparative study

doi: 10.1016/j.jobab.2021.04.004
More Information
  • Corresponding author: Corresponding author Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
    Email address: suseela1962@gmail.com (Suseela Mathew).
  • Received Date: 2020-06-24
  • Accepted Date: 2020-08-29
  • Rev Recd Date: 2020-08-19
  • In the present study, myofibrillar proteins were extracted from the meat proteins of beef, lamb, chicken, tuna and emperor fish using non-denaturation method, and their physico-chemical and rheological properties were assessed. The myofibrillar proteins of beef, emperor and lamb samples had higher percentage of protein extractability than tuna and chicken samples. The tuna sample showed significantly higher bound bromophenol blue (BPB) value while lamb samples showed lower value (P < 0.05). The myofibrillar protein of chicken sample was found to have more ionic and hydrogen bonds than all other myofibrillar samples. The disulphide bonds in tuna and lamb myofibrillar protein samples were significantly higher than other three samples (P < 0.05). The myofibrillar protein samples showed major bands myosin heavy chain, α-actinin, desimin, actin, troponin, tropomyosin and myosin light chain with wider molecular weight distribution in the range of 20-200 ku. The myofibrillar proteins exhibited Newtonian and shear thickening nature behaviour at lower protein concentration (1 mg/mL) as revealed by flow profile and visco-elastic analysis using rheometer.

     

  • loading
  • [1]
    Bulaj, G., 2005. Formation of disulfide bonds in proteins and peptides. Biotechnol. Adv. 23, 87–92. doi: 10.1016/j.biotechadv.2004.09.002
    [2]
    Chan, J.K., Gill, T.A., 1994. Thermal aggregation of mixed fish myosins. J. Agric. Food Chem. 42, 2649–2655. doi: 10.1021/jf00048a001
    [3]
    Chan, J.K., Gill, T.A., Paulson, A., 1992. Cross-linking of myosin heavy chains from cod, herring and silver Hake during thermal setting. J. Food Sci. 57, 906–912. doi: 10.1111/j.1365-2621.1992.tb14320.x
    [4]
    Chapleau, N.J., Lamballerie-Anton, M.I., 2003. Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing. Eur. Food Res. Technol. 216, 470–476. doi: 10.1007/s00217-003-0684-5
    [5]
    Chelh, I., Gatellier, P., Santé-Lhoutellier, V., 2006. Technical note: a simplified procedure for myofibril hydrophobicity determination. Meat Sci. 74, 681–683. doi: 10.1016/j.meatsci.2006.05.019
    [6]
    Chen, X., Tume, R.K., Xu, X., Zhou, G., 2017. Solubilization of myofibrillar proteins in water or low ionic strength media: classical techniques, basic principles, and novel functionalities. Crit. Rev. Food Sci. Nutr. 57, 3260–3280. doi: 10.1080/10408398.2015.1110111
    [7]
    Chen, X., Xu, X.L., Liu, D.M., Zhou, G.H., Han, M.Y., Wang, P., 2018. Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating. Food Hydrocoll. 77, 524–533. doi: 10.1016/j.foodhyd.2017.10.030
    [8]
    Choi, S.M., Mine, Y., Ma, C.Y., 2006. Characterization of heat-induced aggregates of globulin from common buckwheat (Fagopyrum esculentum Moench). Int. J. Biol. Macromol. 39, 201–209. doi: 10.1016/j.ijbiomac.2006.03.025
    [9]
    Christianson, D., Bagley, E., 1984. Yield stresses in dispersions of swollen: deformable cornstarch granules. Cereal Chem. 61, 500–503. http://europepmc.org/abstract/AGR/IND85040343
    [10]
    Diniz, F.M., Martin, A.M., 1997. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. LWT-Food Sci. Technol. 30, 266–272. doi: 10.1006/fstl.1996.0184
    [11]
    Donovan, J.W., 1969. Changes in ultraviolet absorption produced by alteration of protein conformation. J. Biol. Chem. 244, 1961–1967. doi: 10.1016/S0021-9258(18)94353-X
    [12]
    Flory, P.J., Weaver, E.S., 1960. Helix [UNK] coil transitions in dilute aqueous collagen solutions1. J. Am. Chem. Soc. 82, 4518–4525. doi: 10.1021/ja01502a018
    [13]
    Glicksman, M., 1969. Rheology, texture and gums. In: Gum Technology in the Food Industry. New York and London (UK): Academic Press, 56–93.
    [14]
    Guo, X.J., Wang, R.Q., 2018. Changes in secondary structure of myofibrillar protein and its relationship with water dynamic changes during storage of battered and deep-fried pork slices. Food Sci. Biotechnol. 27, 1667–1673. doi: 10.1007/s10068-018-0395-0
    [15]
    Hayakawa, I., Linko, Y.Y., Linko, P., 1996. Mechanism of high pressure denaturation of proteins. LWT-Food Sci. Technol. 29, 756–762. doi: 10.1006/fstl.1996.0118
    [16]
    Hopkins, D.L., Thompson, J.M., 2002. The degradation of myofibrillar proteins in beef and lamb using denaturing electrophoresis: an overview. J. Muscle Foods 13, 81–102. doi: 10.1111/j.1745-4573.2002.tb00323.x
    [17]
    Jia, D., You, J., Hu, Y., Liu, R., Xiong, S., 2015. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chem. 185, 212–218. doi: 10.1016/j.foodchem.2015.03.130
    [18]
    Kumar, P., Correspondence, P., Elavarasan, K., Shamasundar, B., 2017. Functional properties of gelatin obtained from croaker fish (Johnius sp) skin by rapid method of extraction.
    [19]
    Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. doi: 10.1038/227680a0
    [20]
    Lana, A., Zolla, L., 2016. Proteolysis in meat tenderization from the point of view of each single protein: a proteomic perspective. J. Proteomics 147, 85–97. doi: 10.1016/j.jprot.2016.02.011
    [21]
    Lee, C.H., Moturi, V., Lee, Y., 2009. Thixotropic property in pharmaceutical formulations. J. Control Release 136, 88–98. doi: 10.1016/j.jconrel.2009.02.013
    [22]
    Li, G.S., Chen, Y.T., Xuan, S.F., Lv, M., Zhang, J.J., Lou, Q.M., Jia, R., Yang, W.G., 2019. Rheological properties and structure of myofibrillar protein extracted from Oratosquilla oratoria muscle as affected by ultra-high pressure. Int. J. Food Prop. 22, 1310–1321. doi: 10.1080/10942912.2019.1642915
    [23]
    Liu, Q., Bao, H.R., Xi, C.R., Miao, H.L., 2014. Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. J. Food Eng. 121, 58–63. doi: 10.1016/j.jfoodeng.2013.08.016
    [24]
    Liu, R., Zhao, S.M., Xie, B.J., Xiong, S.B., 2011. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocoll. 25, 898–906. doi: 10.1016/j.foodhyd.2010.08.016
    [25]
    Liu, Y.M., Lin, T.S., Lanier, T.C., 1982. Thermal denaturation and aggregation of actomyosin from Atlantic croaker. J. Food Sci. 47, 1916–1920. doi: 10.1111/j.1365-2621.1982.tb12913.x
    [26]
    Liu, Z.Z., Zhang, L., Malfliet, A., Blanpain, B., Guo, M.X., 2018. Non-Newtonian behavior of solid-bearing silicate melts: an experimental study. J. Non-Cryst. Solids 493, 65–72. doi: 10.1016/j.jnoncrysol.2018.04.042
    [27]
    López-Bote, C., 2017. Chemical and Biochemical Constitution of muscle. Lawrie's Meat Science. Amsterdam: Elsevier, 99–158.
    [28]
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J. Bio. Chem. 193, 265–275. doi: 10.1016/S0021-9258(19)52451-6
    [29]
    Macosko, C.W., Larson, R.G., 1994. Rheology: Principles, Measurements, and Applications. Weinheim: W iley-VCH.
    [30]
    Malhotra, A., Coupland, J.N., 2004. The effect of surfactants on the solubility, Zeta potential, and viscosity of soy protein isolates. Food Hydrocoll. 18, 101–108. doi: 10.1016/S0268-005X(03)00047-X
    [31]
    Malva, A.D., Albenzio, M., Santillo, A., Russo, D., Figliola, L., Caroprese, M., Marino, R., 2018. Methods for extraction of muscle proteins from meat and fish using denaturing and nondenaturing solutions. J. Food Qual. 2018, 1–9. http://www.researchgate.net/publication/329262216_Methods_for_Extraction_of_Muscle_Proteins_from_Meat_and_Fish_Using_Denaturing_and_Nondenaturing_Solutions
    [32]
    Mehta, N.K., Chouksey, M.K., Balange, A.K., Tripathi, G., Nayak, B.B., 2017. Physicochemical and gel properties of myofibrillar protein from sin croaker (Johnius dussumieri) fish during ice storage. J. Aquat. Food Prod. Technol. 26, 71–85. doi: 10.1080/10498850.2015.1092485
    [33]
    Pearce, K.N., Kinsella, J.E., 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723. doi: 10.1021/jf60217a041
    [34]
    Rao, M.A., Kenny, J.F., 1975. Flow properties of selected food gums. Can. Inst. Food Sci. Technol. J. 8, 142–148. doi: 10.1016/S0315-5463(75)73766-5
    [35]
    Rao, M.A., Tattiyakul, J., 1999. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydr. Polym. 38, 123–132. doi: 10.1016/S0144-8617(98)00112-X
    [36]
    Robinson, H.W., Hogden, C.G., 1940. The biuret reaction in the determination of serum proteins: i. a study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. J. Biol. Chem. 135, 707–725. doi: 10.1016/S0021-9258(18)73134-7
    [37]
    Sathe, S.K., Salunkhe, D.K., 1981. Functional properties of the great northern bean (Phaseolus vulgaris L. ) proteins: emulsion, foaming, viscosity, and gelation properties. J. Food Sci. 46, 71–81. doi: 10.1111/j.1365-2621.1981.tb14533.x
    [38]
    Stone, A.P., Stanley, D.W., 1992. Mechanisms of fish muscle gelation. Food Res. Int. 25, 381–388. doi: 10.1016/0963-9969(92)90113-J
    [39]
    Sun, X.D., Holley, R.A., 2011. Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf. 10, 33–51. doi: 10.1111/j.1541-4337.2010.00137.x
    [40]
    Tejada, M., Huidobro, A., Mohamed, G.F., 2003. Comparison of gilthead sea bream (Sparus aurata) and Hake (Merluccius merluccius) muscle proteins during iced and frozen storage. J. Sci. Food Agric. 83, 113–122. doi: 10.1002/jsfa.1289
    [41]
    Wang, Y., Zhou, Y., Li, P.J., Wang, X.X., Cai, K.Z., Chen, C.G., 2018. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions. Food Chem. 269, 236–243. doi: 10.1016/j.foodchem.2018.06.107
    [42]
    Wang, Y., Zhou, Y., Wang, X.X., Ma, F., Xu, B.C., Li, P.J., Chen, C.G., 2020. Origin of high-pressure induced changes in the properties of reduced-sodium chicken myofibrillar protein gels containing CaCl2: physicochemical and molecular modification perspectives. Food Chem. 319, 126535. doi: 10.1016/j.foodchem.2020.126535
    [43]
    Xiong, Y.L., 1994. Myofibrillar protein from different muscle fiber types: implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nutr. 34, 293–320. doi: 10.1080/10408399409527665
    [44]
    Yapar, A., Atay, S., Kayacier, A., Yetim, H., 2006. Effects of different levels of salt and phosphate on some emulsion attributes of the common carp (Cyprinus carpio L., 1758). Food Hydrocoll. 20, 825–830. doi: 10.1016/j.foodhyd.2005.08.005
    [45]
    Yarnpakdee, S., Benjakul, S., Visessanguan, W., Kijroongrojana, K., 2009. Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocoll. 23, 1779–1784. doi: 10.1016/j.foodhyd.2009.03.006
    [46]
    Zayas, J.F., 1997. Introduction. Functionality of Proteins in Food. Berlin, Heidelberg: Springer Berlin Heidelberg, 1–5.
    [47]
    Zhou, X.X., Chen, H., Lyu, F., Lin, H.H., Zhang, Q., Ding, Y.T., 2019. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: effects of fat type and concentration. Food Hydrocoll. 90, 433–442. doi: 10.1016/j.foodhyd.2018.12.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (92) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return