Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Jian Luo, Tianbiao Leo Liu. Electrochemical valorization of lignin: Status, challenges, and prospects[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 1-14. doi: 10.1016/j.jobab.2022.11.003
Citation: Jian Luo, Tianbiao Leo Liu. Electrochemical valorization of lignin: Status, challenges, and prospects[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 1-14. doi: 10.1016/j.jobab.2022.11.003

Electrochemical valorization of lignin: Status, challenges, and prospects

doi: 10.1016/j.jobab.2022.11.003
More Information
  • Corresponding author: E-mail address: Leo.Liu@usu.edu (T.L. Liu)
  • Received Date: 2022-07-06
  • Accepted Date: 2022-10-30
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-11-19
  • Publish Date: 2023-02-01
  • As the second most abundant component of lignocellulosic biomass and the largest source of renewable aromatic compounds, lignin shows great potential to replace finite, non-renewable fossil oils and becomes a renewable feedstock for the production of fuel and aromatic chemicals. Therefore, it is highly important to develop efficient methods to convert lignin into biofuels and valuable chemicals. Electrochemical approaches are considered to be scalable, oxidant/reductant free, easy to control, and can be conducted under mild conditions. This review firstly overviews the structure and deconstruction methods of lignin. And then, different electrochemical lignin conversion approaches, including mediated electrooxidation, electroenzymatic oxidation, photoelectrochemical oxidation, and direct electrooxidation, are discussed in detail. The application of lignin-derived monomeric compounds is also briefly introduced. Finally, the advantages and challenges of different electrochemical lignin upgrading approaches are summarized; meanwhile, suggestions are made for future research on lignin biomass valorization.


  • Declaration of Competing Interest  There are no conflicts to declare.
  • loading
  • Abdel-Hamid, A.M., Solbiati, J.O., Cann, I.K.O., 2013. Insights into lignin degradation and its potential industrial applications. Adv. Appl. Microbiol. 82, 1–28.
    Achyuthan, K.E., Achyuthan, A.M., Adams, P.D., Dirk, S.M., Harper, J.C., Simmons, B.A., Singh, A.K., 2010. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellul osic biofuels. Molecules 15, 8641–8688. doi: 10.3390/molecules15118641
    Afanasenko, A., Barta, K., 2021. Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: present and perspectives. iScience 24, 102211. doi: 10.1016/j.isci.2021.102211
    Akhade, S.A., Singh, N., Gutiérrez, O.Y., Lopez-Ruiz, J., Wang, H.M., Holladay, J.D., Liu, Y., Karkamkar, A., Weber, R.S., Padmaperuma, A.B., Lee, M.S., Whyatt, G.A., Elliott, M., Holladay, J.E., Male, J.L., Lercher, J.A., Rousseau, R., Glezakou, V.A., 2020. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419. doi: 10.1021/acs.chemrev.0c00158
    Akhtari, S., Sowlati, T., Day, K., 2014. Economic feasibility of utilizing forest biomass in district energy systems: a review. Renew. Sustain. Energy Rev. 33, 117–127. doi: 10.1016/j.rser.2014.01.058
    Alsarraf, J., Bilodeau, J.F., Legault, J., Simard, F., Pichette, A., 2020. Exploring the biomass-derived chemical space emerging from natural dihydrochalcones through the single-step hemisynthesis of antibacterial balsacones. ACS Sustain. Chem. Eng. 8, 6194–6199. doi: 10.1021/acssuschemeng.0c01545
    Amidon, T.E., Liu, S.J., 2009. Water-based woody biorefinery. Biotechnol. Adv. 27, 542–550. doi: 10.1016/j.biotechadv.2009.04.012
    Amorati R., Lucarini M., Mugnaini V., Pedulli G.F., Minisci F., Recupero F., Fontana F., Astolfi P., Greci L., 2003. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies. J. Org. Chem. 68, 1747–1754. doi: 10.1021/jo026660z
    Andrews, E., Lopez-Ruiz, J.A., Egbert, J.D., Koh, K., Sanyal, U., Song, M., Li, D.S., Karkamkar, A.J., Derewinski, M.A., Holladay, J., Gutiérrez, O.Y., Holladay, J.D., 2020. Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds. ACS Sustain. Chem. Eng. 8, 4407–4418. doi: 10.1021/acssuschemeng.9b07041
    Bailey, A., Brooks, H.M., 1946. Electrolytic oxidation of lignin. J. Am. Chem. Soc. 68, 445–446. doi: 10.1021/ja01207a029
    Barron, A.R., Domeshek, M., Metz, L.E., Draucker, L.C., Strong, A.L., 2021. Carbon neutrality should not be the end goal: lessons for institutional climate action from U.S. higher education. One Earth 4, 1248–1258. doi: 10.1016/j.oneear.2021.08.014
    Blondiaux, E., Bomon, J., Smoleń, M., Kaval, N., Lemière, F., Sergeyev, S., Diels, L., Sels, B., Maes, B.U.W., 2019. Bio-based aromatic amines from lignin-derived monomers. ACS Sustain. Chem. Eng. 7, 6906–6916. doi: 10.1021/acssuschemeng.8b06467
    Bosque, I., Magallanes, G., Rigoulet, M., Kärkäs, M.D., Stephenson, C.R.J., 2017. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 3, 621–628. doi: 10.1021/acscentsci.7b00140
    Bruno, F., Pham, M.C., Dubois, J.E., 1977. Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochim. Acta 22, 451–457. doi: 10.1016/0013-4686(77)85100-1
    Cai, P., Fan, H.X., Cao, S., Qi, J., Zhang, S.M., Li, G., 2018. Electrochemical conversion of corn stover lignin to biomass-based chemicals between Cu/NiMoCo cathode and Pb/PbO2 anode in alkali solution. Electrochim. Acta 264, 128–139. doi: 10.1016/j.electacta.2018.01.111
    Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W., 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384–406. doi: 10.1039/C3GC41631C
    Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141. doi: 10.1016/j.indcrop.2004.04.016
    Chen, Z., Wan, C.X., 2017. Biological valorization strategies for converting lignin into fuels and chemicals. Renew. Sustain. Energy Rev. 73, 610–621. doi: 10.1016/j.rser.2017.01.166
    d'Acunzo, F., Baiocco, P., Fabbrini, M., Galli, C., Gentili, P., 2002. The radical rate-determining step in the oxidation of benzyl alcohols by two N-OH-type mediators of laccase: the polar N-oxyl radical intermediate. New J. Chem. 26, 1791–1794. doi: 10.1039/B206928H
    Diaz, L.A., Lister, T.E., Rae, C., Wood, N.D., 2018. Anion exchange membrane electrolyzers as alternative for upgrading of biomass-derived molecules. ACS Sustain. Chem. Eng. 6, 8458–8467. doi: 10.1021/acssuschemeng.8b00650
    Du, X., Zhang, H.C., Sullivan, K.P., Gogoi, P., Deng, Y.L., 2020. Electrochemical lignin conversion. ChemSusChem 13, 4318–4343. doi: 10.1002/cssc.202001187
    Dusselier, M., Mascal, M., Sels, B.F., 2014. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery. Top. Curr. Chem. 353, 1–40. doi: 10.1007/128_2014_544
    Dutta, S., De, S., Saha, B., Alam, M.I., 2012. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2, 2025–2036. doi: 10.1039/c2cy20235b
    Elangovan, S., Afanasenko, A., Haupenthal, J., Sun, Z.H., Liu, Y.Z., Hirsch, A.K.H., Barta, K., 2019. From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds. ACS Cent. Sci. 5, 1707–1716. doi: 10.1021/acscentsci.9b00781
    Evtuguin D.V., Neto C.P., Silva A.M., Domingues P.M., Amado F.M., Robert D., Faix O., 2001. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 49, 4252–4261. doi: 10.1021/jf010315d
    Ezerskis, Z., Jusys, Z., 2001. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study. J. Appl. Electrochem. 31, 1117–1124. doi: 10.1023/A:1012280216273
    Fache, M., Boutevin, B., Caillol, S., 2016. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46. doi: 10.1021/acssuschemeng.5b01344
    Flagg, J.A., 2015. Aiming for zero: what makes nations adopt carbon neutral pledges? Environ. Sociol. 1, 202–212. doi: 10.1080/23251042.2015.1041213
    Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P.M., de Vries, R.P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J.A., Kallen, N., Kersten, P., Kohler, A., Kües, U., Kumar, T.K.A., Kuo, A.L., LaButti, K., Larrondo, L.F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D.J., Morgenstern, I., Morin, E., Murat, C., Nagy, L.G., Nolan, M., Ohm, R.A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F.J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J.C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D.C., Martin, F., Cullen, D., Grigoriev, I.V., Hibbett, D.S., 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719. doi: 10.1126/science.1221748
    Fu, J.T., Ren, Z., Bacsa, J., Musaev, D.G., Davies, H.M.L., 2018. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399. doi: 10.1038/s41586-018-0799-2
    Garedew, M., Lam, C.H., Petitjean, L., Huang, S.Q., Song, B., Lin, F., Jackson, J.E., Saffron, C.M., Anastas, P.T., 2021. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chem. 23, 2868–2899. doi: 10.1039/d0gc04127k
    Ghahremani, R., Farales, F., Bateni, F., Staser, J.A., 2020. Simultaneous hydrogen evolution and lignin depolymerization using NiSn electrocatalysts in a biomass-depolarized electrolyzer. J. Electrochem. Soc. 167, 043502. doi: 10.1149/1945-7111/ab7179
    Gold, M.H., Wariishi, H., Valli, K., 1989. Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. Biocatalysis in Agricultural Biotechnology Chapter 9, pp. 127–140.
    Grainger, A., Smith, G., 2021. The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Curr. Opin. Environ. Sustain. 49, 164–189. doi: 10.1016/j.cosust.2021.06.006
    Holladay, J.E., White, J.F., Bozell, J.J., Johnson, D., 2007. Top value-added chemicals from biomass—Volume Ⅱ—results of screening for potential candidates from biorefinery lignin. Available at: www.energy.gov/sites/default/files/2014/03/f14/pnnl-16983.pdf. .
    Horn, E.J., Rosen, B.R., Chen, Y., Tang, J.Z., Chen, K., Eastgate, M.D., Baran, P.S., 2016. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81. doi: 10.1038/nature17431
    Hu, L.H., Pan, H., Zhou, Y.H., Zhang, M., 2011. Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources 6, 3515–3525. doi: 10.15376/biores.6.3.Hu
    Jia, Y.Q., Wen, Y.Q., Han, X., Qi, J., Liu, Z.H., Zhang, S.M., Li, G., 2018. Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode. Catal. Sci. Technol. 8, 4665–4677. doi: 10.1039/c8cy00307f
    Ko, M., Pham, L.T.M., Sa, Y.J., Woo, J., Nguyen, T.V.T., Kim, J.H., Oh, D., Sharma, P., Ryu, J., Shin, T.J., Joo, S.H., Kim, Y.H., Jang, J.W., 2019. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10, 1–10. doi: 10.1038/s41467-018-07882-8
    Lan, C.X., Fan, H.X., Shang, Y.Y., Shen, D.Y., Li, G., 2020. Electrochemically catalyzed conversion of cornstalk lignin to aromatic compounds: an integrated process of anodic oxidation of a Pb/PbO2 electrode and hydrogenation of a nickel cathode in sodium hydroxide solution. Sustain. Energy Fuels 4, 1828–1836. doi: 10.1039/c9se00942f
    Landucci, L.L., Luque, S., Ralph, S., 1995. Reaction of p-hydroxycinnamyl alcohols with transition metal salts. 2. preparation of guaiacyl/syringyl di-, tri-, and tetralignols. J. Wood Chem. Technol. 15, 493–513. doi: 10.1080/02773819508009522
    Lee, K., Moon, S.H., 2003. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J. Biotechnol. 102, 261–268. doi: 10.1016/S0168-1656(03)00027-0
    Lewin, M.G., 1991. Wood Structure and Composition. CRC Press, Boca Raton, pp. 183–261.
    Li, C.Z., Zhao, X.C., Wang, A.Q., Huber, G.W., Zhang, T., 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624. doi: 10.1021/acs.chemrev.5b00155
    Li, S.Y., Li, Z.J., Yu, H., Sytu, M.R., Wang, Y.X., Beeri, D., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2020. Solar-driven lignin oxidation via hydrogen atom transfer with a dye-sensitized TiO2 photoanode. ACS Energy Lett. 5, 777–784. doi: 10.1021/acsenergylett.9b02391
    Li, T.F., Kasahara, T., He, J.F., Dettelbach, K.E., Sammis, G.M., Berlinguette, C.P., 2017. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390. doi: 10.1038/s41467-017-00420-y
    Liu, C., Wu, S.L., Zhang, H.Y., Xiao, R., 2019. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process. Technol. 191, 181–201. doi: 10.1016/j.fuproc.2019.04.007
    Liu, M.M., Wen, Y.Q., Qi, J., Zhang, S.M., Li, G., 2017. Fine chemicals prepared by bamboo lignin degradation through electrocatalytic redox between Cu cathode and Pb/PbO2 anode in alkali solution. ChemistrySelect 2, 4956–4962. doi: 10.1002/slct.201700881
    Liu, W., You, W.Q., Gong, Y.T., Deng, Y.L., 2020. High-efficiency electrochemical hydrodeoxygenation of bio-phenols to hydrocarbon fuels by a superacid-noble metal particle dual-catalyst system. Energy Environ. Sci. 13, 917–927. doi: 10.1039/c9ee02783a
    Lucas, F.W.S., Grim, R.G., Tacey, S.A., Downes, C.A., Hasse, J., Roman, A.M., Farberow, C.A., Schaidle, J.A., Holewinski, A., 2021. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett., 1205–1270. doi: 10.1021/acsenergylett.0c02692
    Luo, J., Hu, B., Hu, M.W., Zhao, Y., Liu, T.L., 2019. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240. doi: 10.1021/acsenergylett.9b01332
    Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield T., 2019. Global Warming of 1.5 ℃. Available at: www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_HR.pdf. .
    May, A.S., Biddinger, E.J., 2020. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catal. 10, 3212–3221. doi: 10.1021/acscatal.9b05531
    Mika, L.T., Cséfalvay, E., Németh, Á., 2018. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613. doi: 10.1021/acs.chemrev.7b00395
    Möhle, S., Zirbes, M., Rodrigo, E., Gieshoff, T., Wiebe, A., Waldvogel, S.R., 2018. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. Engl. 57, 6018–6041. doi: 10.1002/anie.201712732
    Natte, K., Narani, A., Goyal, V., Sarki, N., Jagadeesh, R.V., 2020. Synthesis of functional chemicals from lignin-derived monomers by selective organic transformations. Adv. Synth. Catal. 362, 5143–5169. doi: 10.1002/adsc.202000634
    Nutting, J.E., Rafiee, M., Stahl, S.S., 2018. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885. doi: 10.1021/acs.chemrev.7b00763
    Parpot, P., Bettencourt, A., Carvalho, A.M., Belgsir, E.M., 2000. Biomass conversion: attempted electrooxidation of lignin for vanillin production. J. Appl. Electrochem. 30, 727–731. doi: 10.1023/A:1004003613883
    Patel, R.N., 2007. Biocatalysis in the pharmaceutical and biotechnology industries. Org. Process Res. Dev. 11, 296. doi: 10.1021/op7000222
    Peng, T., Zhuang, T.T., Yan, Y., Qian, J., Dick, G.R., Behaghel de Bueren, J., Hung, S.F., Zhang, Y., Wang, Z.Y., Wicks, J., Garcia de Arquer, F.P., Abed, J., Wang, N., Sedighian Rasouli, A., Lee, G., Wang, M., He, D.P., Wang, Z., Liang, Z.X., Song, L., Wang, X., Chen, B., Ozden, A., Lum, Y., Leow, W.R., Luo, M.C., Meira, D.M., Ip, A.H., Luterbacher, J.S., Zhao, W., Sargent, E.H., 2021. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 143, 17226–17235. doi: 10.1021/jacs.1c08348
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C., 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Available at: digital.library.unt.edu/ark:/67531/metadc891530/m2/1/high_res_d/885984.pdf. .
    Pollegioni, L., Tonin, F., Rosini, E., 2015. Lignin-degrading enzymes. FEBS J. 282, 1190–1213. doi: 10.1111/febs.13224
    Rafiee, M., Alherech, M., Karlen, S.D., Stahl, S.S., 2019. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. J. Am. Chem. Soc. 141, 15266–15276. doi: 10.1021/jacs.9b07243
    Rafiee, M., Wang, F., Hruszkewycz, D.P., Stahl, S.S., 2018. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C-H functionalization. J. Am. Chem. Soc. 140, 22–25. doi: 10.1021/jacs.7b09744
    Ralph, J., Lundquist, K., Brunow, G., Lu, F.C., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W., 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29–60. doi: 10.1023/B:PHYT.0000047809.65444.a4
    Recupero, F., Punta, C., 2007. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem. Rev. 107, 3800–3842. doi: 10.1021/cr040170k
    Rodrigues Pinto, P.C., Borges da Silva, E.A., Rodrigues, A.E., 2011. Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind. Eng. Chem. Res. 50, 741–748. doi: 10.1021/ie102132a
    Ruppert, A.M., Weinberg, K., Palkovits, R., 2012. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. Engl. 51, 2564–2601. doi: 10.1002/anie.201105125
    Sannami, Y., Kamitakahara, H., Takano, T., 2017. TEMPO-mediated electro-oxidation reactions of non-phenolic β-O-4-type lignin model compounds. Holzforschung 71, 109–117. doi: 10.1515/hf-2016-0117
    Semmelhack, M.F., Chou, C.S., Cortes, D.A., 1983. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones. J. Am. Chem. Soc. 105, 4492–4494. doi: 10.1021/ja00351a070
    In Shelke, S.A., Sigurdsson, S.T., Nakatani, K., Tor, Y., 2016. Site-directed spin labeling for EPR studies of nucleic acids. Modified Nucleic Acids. Nucleic Acids and Molecular Biology. Springer International Publishing, Cham, pp. 159–187.
    Shiraishi, T., Takano, T., Kamitakahara, H., Nakatsubo, F., 2012. Studies on electro-oxidation of lignin and lignin model compounds. Part 2: N-Hydroxyphthalimide (NHPI)-mediated indirect electro-oxidation of non-phenolic lignin model compounds. Holzforschung 66, 311–315.
    St Amant, A.H., Frazier, C.P., Newmeyer, B., Fruehauf, K.R., Read de Alaniz, J., 2016. Direct synthesis of anilines and nitrosobenzenes from phenols. Org. Biomol. Chem. 14, 5520–5524. doi: 10.1039/C6OB00073H
    Sun, Z.H., Bottari, G., Afanasenko, A., Stuart, M.C.A., Deuss, P.J., Fridrich, B., Barta, K., 2018. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92. doi: 10.1038/s41929-017-0007-z
    Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678. doi: 10.1021/acs.chemrev.7b00588
    The Business Research Company, 2020. HIV drugs global market report 2020-30: Covid-19 implications and growth. Available at: www.researchandmarkets.com/reports/5017374/hiv-drugs-global-market-report-2020-30-covid-19. .
    Tolba, R., Tian, M., Wen, J.L., Jiang, Z.H., Chen, A.C., 2010. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanal. Chem. 649, 9–15. doi: 10.1016/j.jelechem.2009.12.013
    Tu, Q.S., Parvatker, A., Garedew, M., Harris, C., Eckelman, M., Zimmerman, J.B., Anastas, P.T., Lam, C.H., 2021. Electrocatalysis for chemical and fuel production: investigating climate change mitigation potential and economic feasibility. Environ. Sci. Technol. 55, 3240–3249. doi: 10.1021/acs.est.0c07309
    Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W., 2010. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905. doi: 10.1104/pp.110.155119
    Wang, A.Q., Li, C.Z., Zheng, M.Y., Zhang, T., 2012. Heterogeneous catalysts for biomass conversion. The Role of Green Chemistry in Biomass Processing and Conversion. John Wiley & Sons, Inc., Hoboken, pp. 313–348.
    Wang, W., Wen, X.H., 2009. Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. J. Environ. Sci. 21, 218–222. doi: 10.1016/S1001-0742(08)62254-8
    Yang, C., Farmer, L. A., Pratt, D.A., Maldonado, S., Stephenson, C.R.J., 2021. Mechanism of electrochemical generation and decomposition of phthalimide-N-oxyl. J. Am. Chem. Soc. 143, 10324-10332. doi: 10.1021/jacs.1c04181
    Yang, C., Maldonado, S., Stephenson, C. R. J., 2021. Electrocatalytic lignin oxidation. ACS Catal. 11, 10104-10114. doi: 10.1021/acscatal.1c01767
    Yue, F.X., Lu, F.C., Sun, R.C., Ralph, J., 2012. Synthesis and characterization of new 5-linked pinoresinol lignin models. Chem. Eur. J. 18, 16402–16410. doi: 10.1002/chem.201201506
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599. doi: 10.1021/cr900354u
    Zhou, H., Li, Z.H., Ma, L.N., Duan, H.H., 2022. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem. Commun. 58, 897–907. doi: 10.1039/d1cc06254a
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint