Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Penghui Li, Chi Yang, Zhengwei Jiang, Yongcan Jin, Wenjuan Wu. Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 33-44. doi: 10.1016/j.jobab.2022.11.004
Citation: Penghui Li, Chi Yang, Zhengwei Jiang, Yongcan Jin, Wenjuan Wu. Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 33-44. doi: 10.1016/j.jobab.2022.11.004

Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review

doi: 10.1016/j.jobab.2022.11.004
More Information
  • Corresponding author: E-mail address: wenjuanwu@njfu.edu.cn (W. Wu)
  • Received Date: 2022-08-21
  • Accepted Date: 2022-10-24
  • Rev Recd Date: 2022-10-17
  • Available Online: 2022-11-25
  • Publish Date: 2023-02-01
  • Lignocellulose is the main component of plants and has a wide range of sources. The high-value production of lignocellulose lies in the biorefinery of lignin, cellulose and hemicellulose. The advantages and disadvantages of traditional lignocellulose pretreatment methods were summarized, and the effective pretreatment parameters were listed. As a green solvent system with excellent performance, deep eutectic solvents (DES) are considered to be the most potential biomass pretreatment system. Based on this, the new trend and progress of DES in lignocellulose pretreatment were reviewed, focusing on the effects of distinct kinds of lignocellulose raw materials, distinct components of DES, distinct reaction conditions and assisted by microwave ultrasound on the pretreatment of lignocellulose, and the recyclability of DES solution system was discussed. Finally, the application and development direction of DES in lignocellulose pretreatment are proposed and prospected.

     

  • Declaration of Competing Interest There are no conflicts to declare.
  • loading
  • Alvarez-Vasco, C., Ma, R.S., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K.K., Wolcott, M., Zhang, X., 2016. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18, 5133–5141. doi: 10.1039/C6GC01007E
    Avila-Gaxiola, J., Velarde-Escobar, O.J., Millan-Almaraz, J.R., Ramos-Brito, F., Atondo-Rubio, G., Yee-Rendon, C., Avila-Gaxiola, E., 2018. Treatments to improve obtention of reducing sugars from agave leaves powder. Ind. Crops Prod. 112, 577–583. doi: 10.1016/j.indcrop.2017.12.039
    Awais, M., Mustafa, M.S., Rasheed, M.A., Jamil, F., Naqvi, S.M.Z.A., 2020. Metal oxides and ultraviolet light-based photocatalytic pretreatment of biomass for biogas production and lignin oxidation. BioResources 15, 1747–1762. doi: 10.15376/biores.15.1.1747-1762
    Basak, B., Patil, S., Kumar, R., Ha, G.S., Park, Y.K., Khan, M.A., Kumar Yadav, K., Fallatah, A.M., Jeon, B.H., 2022. Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresour. Technol. 351, 127034. doi: 10.1016/j.biortech.2022.127034
    Bukhtoyarov, V.A., Bychkov, A.L., Lomovskii, O.I., 2015. Effect of lignocellulose substrate on enzyme denaturation during joint mechanical treatment. Russ. Chem. Bull. 64, 948–951. doi: 10.1007/s11172-015-0960-0
    Chen, L., Gu, W., Xu, H.Y., Yang, G.L., Shan, X.F., Chen, G., Kang, Y.H., Wang, C.F., Qian, A.D., 2018a. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech 8, 253. doi: 10.2514/1.i010588
    Chen, L., Yu, Q., Wang, Q., Wang, W., Qi, W., Zhuang, X.S., Wang, Z.M., Yuan, Z.H., 2019. A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose 26, 1947–1959. doi: 10.1007/s10570-018-2190-8
    Chen, T.Y., Li, Z.W., Zhang, X.M., Min, D.Y., Wu, Y.Y., Wen, J.L., Yuan, T.Q., 2018b. Effects of hydrothermal pretreatment on the structural characteristics of organosolv lignin from Triarrhena lutarioriparia. Polymers 10, 1157. doi: 10.3390/polym10101157
    Chen, Z., Reznicek, W.D., Wan, C.X., 2018c. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour. Technol. 263, 40–48. doi: 10.3390/electronics7030040
    Chen, Z., Wan, C.X., 2018. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour. Technol. 250, 532–537. doi: 10.1016/j.biortech.2017.11.066
    Colombo Dugoni, G., Mezzetta, A., Guazzelli, L., Chiappe, C., Ferro, M., Mele, A., 2020. Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chem. 22, 8680–8691. doi: 10.1039/d0gc03375h
    Cronin, D.J., Chen, X.W., Moghaddam, L., Zhang, X., 2020. Deep eutectic solvent extraction of high-purity lignin from a corn stover hydrolysate. ChemSusChem 13, 4678–4690. doi: 10.1002/cssc.202001243
    Díaz, M.J., Moya, M., Castro, E., 2022. Bioethanol production from steam-exploded barley straw by Co-fermentation with Escherichia coli SL100. Agronomy 12, 874. doi: 10.3390/agronomy12040874
    Dong, L.L., Cao, G.L., Zhao, L., Liu, B.F., Ren, N.Q., 2018. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production. Bioresour. Technol. 267, 71–76. doi: 10.1016/j.biortech.2018.05.055
    Dong, M.L., Wu, C., Chen, L.D., Zhou, X.L., Yang, W.S., Xiao, H.N., Ji, X.X., Dai, H.Q., Hu, C.Q., Bian, H.Y., 2021. Benzenesulfonic acid-based hydrotropic system for achieving lignocellulose separation and utilization under mild conditions. Bioresour. Technol. 337, 125379. doi: 10.1016/j.biortech.2021.125379
    Duan, D.L., Ruan, R., Wang, Y.P., Liu, Y.H., Dai, L.L., Zhao, Y.F., Zhou, Y., Wu, Q.H., 2018. Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresour. Technol. 251, 57–62. doi: 10.1016/j.biortech.2017.12.022
    Fakayode, O.A., Aboagarib, E.A.A., Yan, D., Li, M., Wahia, H., Mustapha, A.T., Zhou, C.S., Ma, H.L., 2020. Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: parametric screening and optimization via response surface methodology. Energy 203, 117872. doi: 10.1016/j.energy.2020.117872
    Fougere, D., Clarke, K., Zhao, Y., Li, K.C., 2015. Chemical-mechanical pretreatment of wood: reducing downsizing energy and increasing enzymatic digestibility. Biomass Bioenergy 80, 17–29. doi: 10.1016/j.biombioe.2015.04.011
    Gong, L., Wu, X.Y., Wang, Y.D., Zhu, J., Wang, S., Xiu, Y.S., Dong, J.J., Xu, G.C., Ni, Y., 2022. A novel deep eutectic solvent-mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production. Biomass Convers. Bioref., 1–11.
    Haldar, D., Purkait, M.K., 2021. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere 264, 128523. doi: 10.1016/j.chemosphere.2020.128523
    Hu, P., Li, H.N., Xiao, W.J., Xie, X.H., Yang, Y.X., Duan, L., Zhou, S.N., Hu, Y.M., Qiao, Q.M., Ran, Q.P., Jiang, Z.B., 2021. Effect of Rhodococcus sp. pretreatment on cellulose hydrolysis of corn stalk. Prep. Biochem. Biotechnol. 51, 137–143. doi: 10.1080/10826068.2020.1799391
    Ishfaq Bhat, M., Shahi, N.C., Lohani, U.C., Singh, S., Sidique, Q., Sirohi, R., 2022. Microwave irradiation assisted intensive and quick delignification of lignocellulosic biomass, and confirmation by spectral, morphological and crystallinity characterization. Bioresour. Technol. 351, 127029. doi: 10.1016/j.biortech.2022.127029
    Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Lundquist, K., Taherzadeh, M. J, 2011. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6, 5224–5259. doi: 10.15376/biores.6.4.isroi
    Jagannathan, P., Muthukumaran, C., Tamilarasan, K., 2017. A sequential pretreatment of lignocelluloses in bamboo biomass to fermentable sugars by acid/enzymatic hydrolysis. 3 Biotech 7, 260.
    Ji, Q.H., Yu, X.J., Yagoub, A.E.A., Chen, L., Mustapha, A.T., Zhou, C.S., 2021. Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment. Renew. Energy 172, 304–316. doi: 10.1016/j.renene.2021.03.050
    Jiang, J.G., Carrillo-Enríquez, N.C., Oguzlu, H., Han, X.S., Bi, R., Song, M.Y., Saddler, J.N., Sun, R.C., Jiang, F., 2020. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain. Chem. Eng. 8, 7182–7191. doi: 10.1021/acssuschemeng.0c01724
    Kandanelli, R., Thulluri, C., Mangala, R., Rao, P.V.C., Gandham, S., Velankar, H.R., 2018. A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresour. Technol. 265, 573–576. doi: 10.1016/j.biortech.2018.06.002
    Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., Ralph, J., Tamminen, T., Felby, C., Kruus, K., 2019. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresour. Technol. 280, 303–312. doi: 10.1016/j.biortech.2019.02.051
    Kim, K.H., Dutta, T., Sun, J., Simmons, B., Singh, S., 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem. 20, 809–815. doi: 10.1039/C7GC03029K
    Kumar, N., Gautam, R., Stallings, J.D., Lynam, J.G., 2021. Secondary agriculture residues pretreatment using deep eutectic solvents. Waste Biomass Valor. 12, 2259–2269. doi: 10.1007/s12649-020-01176-1
    Lekshmi, M. S., Vishnudas, S., Anil, K.R., 2021. Lignocellulosic materials as reinforcement and replacement for binders in masonry mortar. Constr. Build. Mater. 282, 122607. doi: 10.1016/j.conbuildmat.2021.122607
    Li, C.C., Huang, C.X., Zhao, Y., Zheng, C.J., Su, H.X., Zhang, L.Y., Luo, W.R., Zhao, H., Wang, S.F., Huang, L.J., 2021. Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in bagasse. Processes 9, 384. doi: 10.3390/pr9020384
    Li, L. F., Wu, Z. G., Liang, J. K., Yu, L. P., 2020. Application of deep eutectic solvents in lignocellulosic biomass processing. J. Forestry Eng. 5, 20–28.
    Li, P.H., Ren, J.P., Wu, W.J., 2022. Research progress of lignin degradation in deep eutectic solvents. China Pulp Pap. 7, 78–85.
    Li, W.Q., Amos, K., Li, M., Pu, Y.Q., Debolt, S., Ragauskas, A.J., Shi, J., 2018. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnol. Biofuels 11, 304. doi: 10.1186/s13068-018-1305-7
    Lin, W.Q., Xing, S., Jin, Y.C., Lu, X.M., Huang, C.X., Yong, Q., 2020. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour. Technol. 306, 123163. doi: 10.1016/j.biortech.2020.123163
    Liu, Y., Guo, L.J., Wang, L.Y., Zhan, W., Zhou, H., 2017. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass. Bioresour. Technol. 232, 270–277. doi: 10.1016/j.biortech.2017.01.061
    Liu, Y., Zheng, J.Y., Xiao, J.X., He, X.D., Zhang, K.X., Yuan, S.X., Peng, Z.T., Chen, Z., Lin, X.Q., 2019. Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega 4, 19829–19839. doi: 10.1021/acsomega.9b02709
    Lyu, G.J., Li, T.F., Ji, X.X., Yang, G.H., Liu, Y., Lucia, L.A., Chen, J.C., 2018. Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers 10, 869. doi: 10.3390/polym10080869
    Madadi, M., Zahoor, Song, G.J., Karimi, K., Zhu, D.C., Elsayed, M., Sun, F.B., Abomohra, A., 2022. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Bioresour. Technol. 359, 127503. doi: 10.1016/j.biortech.2022.127503
    Mehrez, I., Chandrasekhar, K., Kim, W., Kim, S.H., Kumar, G., 2022. Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass. Bioresour. Technol. 360, 127505. doi: 10.1016/j.biortech.2022.127505
    Miyamoto, T., Mihashi, A., Yamamura, M., Tobimatsu, Y., Suzuki, S., Takada, R., Kobayashi, Y., Umezawa, T., 2018. Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Ind. Crops Prod. 121, 124–131. doi: 10.1016/j.indcrop.2018.04.077
    Morán-Aguilar, M.G., Costa-Trigo, I., Ramírez-Pérez, A.M., de Blas, E., Calderón-Santoyo, M., Aguilar-Uscanga, M.G., Domínguez, J.M., 2022. Development of sustainable biorefinery processes applying deep eutectic solvents to agrofood wastes. Energies 15, 4101. doi: 10.3390/en15114101
    Morone, A., Sharma, G., Sharma, A., Chakrabarti, T., Pandey, R.A., 2018. Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility. Renew. Energy 120, 88–97. doi: 10.1016/j.renene.2017.12.074
    Oh, Y., Park, S., Jung, D., Oh, K.K., Lee, S.H., 2020. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromol. 165, 187–197. doi: 10.1016/j.ijbiomac.2020.09.145
    Okur, M., Eslek Koyuncu, D.D., 2020. Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic solvents. Biomass Bioenergy 142, 105811. doi: 10.1016/j.biombioe.2020.105811
    Ong, V.Z., Wu, T.Y., Chu, K.K.L., Sun, W.Y., Shak, K.P.Y., 2021. A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Ind. Crops Prod. 160, 112974. doi: 10.1016/j.indcrop.2020.112974
    Procentese, A., Raganati, F., Olivieri, G., Russo, M.E., Rehmann, L., Marzocchella, A., 2018. Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol. Biofuels 11, 37. doi: 10.1186/s13068-018-1034-y
    Sai, Y.W., Lee, K.M., 2019. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose 26, 9517–9528. doi: 10.1007/s10570-019-02770-w
    Sánchez-Badillo, J.A., Gallo, M., Rutiaga-Quiñones, J.G., Garza, J., López-Albarrán, P., 2022. Insights on the cellulose pretreatment at room temperature by choline-chloride-based deep eutectic solvents: an atomistic study. Cellulose 29, 6517–6548. doi: 10.1007/s10570-022-04671-x
    Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol. Adv. 36, 2032–2050. doi: 10.1016/j.biotechadv.2018.08.009
    Sharma, M., Mukesh, C., Mondal, D., Prasad, K., 2013. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 3, 18149–18155. doi: 10.1039/c3ra43404d
    Shen, X.J., Chen, T.Y., Wang, H.M., Mei, Q.Q., Yue, F.X., Sun, S.N., Wen, J.L., Yuan, T.Q., Sun, R.C., 2019a. Structural and morphological transformations of lignin macromolecules during bio-based deep eutectic solvent (DES) pretreatment. ACS Sustain. Chem. Eng. 8, 2130–2137.
    Shen, X.J., Wen, J.L., Mei, Q.Q., Chen, X., Sun, D., Yuan, T.Q., Sun, R.C., 2019b. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem. 21, 275–283. doi: 10.1039/c8gc03064b
    Shi, W., Jia, J.F., Gao, Y.H., Zhao, Y.P., 2013. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water. Bioresour. Technol. 146, 355–362. doi: 10.1016/j.biortech.2013.07.094
    Shrivastava, A., Sharma, R.K., 2022. Lignocellulosic biomass based microbial fuel cells: performance and applications. J. Clean. Prod. 361, 132269. doi: 10.1016/j.jclepro.2022.132269
    Singh, T.A., Sharma, M., Sharma, M., Dutt Sharma, G., Kumar Passari, A., Bhasin, S., 2022. Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel 322, 124284. doi: 10.1016/j.fuel.2022.124284
    Tan, Y.T., Chua, A.S.M., Ngoh, G.C., 2020. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - a review. Bioresour. Technol. 297, 122522. doi: 10.1016/j.biortech.2019.122522
    Tan, Y.T., Ngoh, G.C., Chua, A.S.M., 2018. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crops Prod. 123, 271–277. doi: 10.1016/j.indcrop.2018.06.091
    Thulluri, C., Balasubramaniam, R., Velankar, H.R., 2021. Generation of highly amenable cellulose-Iβ via selective delignification of rice straw using a reusable cyclic ether-assisted deep eutectic solvent system. Sci. Rep. 11, 1591. doi: 10.1038/s41598-020-80719-x
    Vasudev, V., Ku, X.K., Lin, J.Z., 2019. Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses. Bioresour. Technol. 288, 121496. doi: 10.1016/j.biortech.2019.121496
    Volpi, M., Santos, V., Ribeiro, A., Santana, M., Bastos, R., 2019. The role of lignocellulosic composition and residual lipids in empty fruit bunches on the production of humic acids in submerged fermentations. Appl. Biochem. Biotechnol. 187, 957–964. doi: 10.1007/s12010-018-2850-z
    Wang, L.Q., Shen, H.F., Cai, C., Wang, G.H., 2022. Improving enzymatic hydrolysis of hybrid Pennisetum (Pennisetum americanum × P. purpureum) by dehydration combined with dry explosion pretreatment. Biomass Conv. Bioref. 1–13.
    Wang, Z.K., Li, H.Y., Lin, X.C., Tang, L., Chen, J.J., Mo, J.W., Yu, R.S., Shen, X.J., 2020. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour. Technol. 307, 123237. doi: 10.1016/j.biortech.2020.123237
    Xu, H.F., Kong, Y., Peng, J.J., Song, X.M., Liu, Y.Z., Su, Z.N., Li, B., Gao, C.H., Tian, W.D., 2021a. Comprehensive analysis of important parameters of choline chloride-based deep eutectic solvent pretreatment of lignocellulosic biomass. Bioresour. Technol. 319, 124209. doi: 10.1016/j.biortech.2020.124209
    Xu, H.F., Kong, Y., Peng, J.J., Wang, W.X., Li, B., 2021b. Mechanism of deep eutectic solvent delignification: insights from molecular dynamics simulations. ACS Sustain. Chem. Eng. 9, 7101–7111. doi: 10.1021/acssuschemeng.1c01260
    Xu, J.K., Zhou, P.F., Liu, X.Y., Yuan, L., Zhang, C.T., Dai, L., 2021c. Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem 14, 2740–2748. doi: 10.1002/cssc.202100765
    Xu, J.X., Xu, J.M., Zhang, S., Xia, J., Liu, X.Y., Chu, X.Z., Duan, J.N., Li, X.Q., 2018. Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour. Technol. 249, 1058–1061. doi: 10.1016/j.biortech.2017.10.018
    Yan, G.L., Zhou, Y.Z., Zhao, L.Q., Wang, W., Yang, Y.C., Zhao, X.Y., Chen, Y., Yao, X.Y., 2022. Recycling of deep eutectic solvent for sustainable and efficient pretreatment of corncob. Ind. Crops Prod. 183, 115005. doi: 10.1016/j.indcrop.2022.115005
    Yang, X., Song, Y.L., Ma, S., Zhang, X., Tan, T.W., 2020. Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin. Cellulose 27, 3581–3590. doi: 10.1007/s10570-020-03023-x
    Yook, S.D., Kim, J., Gong, G., Ko, J.K., Um, Y., Han, S.O., Lee, S.M., 2020. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy 12, 670–679. doi: 10.1111/gcbb.12699
    Yu, H.T., Xiao, W.H., Han, L.J., Huang, G.Q., 2019. Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour. Technol. 282, 69–74. doi: 10.1016/j.biortech.2019.02.104
    Zanuso, E., Gomes, D.G., Ruiz, H.A., Teixeira, J.A., Domingues, L., 2021. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustain. Energy Fuels 5, 4233–4247. doi: 10.1039/d1se00747e
    Zhang, F., He, Z., Tu, R., Jia, Z.W., Wu, Y.J., Sun, Y., Jiang, E.C., Xu, X.W., 2020. Influence of ultrasonic/torrefaction assisted deep eutectic solvents on the upgrading of bio-oil from corn stalk. ACS Sustain. Chem. Eng. 8, 8562–8576. doi: 10.1021/acssuschemeng.0c00837
    Zhang, Y.J., Eberhardt, T.L., Cai, B., Wu, M.Q., Xu, X.X., Feng, J.F., Pan, H., 2022. Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Ind. Crops Prod. 180, 114700. doi: 10.1016/j.indcrop.2022.114700
    Zhou, X.L., Huang, T.J., Liu, J., Gao, H.L., Bian, H.Y., Wang, R.B., Huang, C., Sha, J.L., Dai, H.Q., 2021. Recyclable deep eutectic solvent coupling sodium hydroxide post-treatment for boosting woody/herbaceous biomass conversion at mild condition. Bioresour. Technol. 320, 124327. doi: 10.1016/j.biortech.2020.124327
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (621) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return