[1] Bai, P.P., Li, S.W., Tao, D.S., Jia, W.P., Meng, Y.G., Tian, Y., 2018. Tribological properties of liquid-metal galinstan as novel additive in Lithium grease. Tribol. Int. 128, 181-189.
[2] Bhaumik, S., Maggirwar, R., Datta, S., Pathak, S.D, 2018. Analyses of anti-wear and extreme pressure properties of Castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 449, 277-286. doi: 10.1016/j.apsusc.2017.12.131
[3] Cheng, M.H., Dien, B.S., Singh, V., 2019. Economics of plant oil recovery:a review. Biocatal. Agric. Biotechnol. 18, 101056. doi: 10.1016/j.bcab.2019.101056
[4] Deivajothi, P., Manieniyan, V., Sivaprakasam, S., 2019. Experimental investigation on DI diesel engine with fatty acid oil from by-product of vegetable oil refinery. Ain Shams Eng. J. 10, 77-82. doi: 10.1016/j.asej.2018.04.005
[5] Ding, M., Lin, B., Sui, T.Y., Wang, A.Y., Yan, S., Yang, Q., 2018. The excellent anti-wear and friction reduction properties of silica nanoparticles as ceramic water lubrication additives. Ceram. Int. 44, 14901-14906.
[6] Evans, R.D., Nixon, H.P., Darragh, C.V., Howe, J.Y., Coffey, D.W., 2007. Effects of extreme pressure additive chemistry on rolling element bearing surface durability. Tribol. Int. 40, 1649-1654. doi: 10.1016/j.triboint.2007.01.012
[7] Gao, C.P., Guo, G.F., Zhang, G., Wang, Q.H., Wang, T.M., Wang, H.G, 2017. Formation mechanisms and functionality of boundary films derived from water lubricated polyoxymethylene/hexagonal boron nitride nanocomposites. Mater. Des. 115, 276-286.
[8] He, C., Yan, H.H., Wang, X.H., Bai, M.L., 2018. Graphene quantum dots prepared by gaseous detonation toward excellent friction-reducing and antiwear additives. Diam. Relat. Mater. 89, 293-300. doi: 10.1016/j.diamond.2018.09.019
[9] He, Z.Y., Lu, J.L., Zeng, X.Q., Shao, H.Y., Ren, T.H., Liu, W.M., 2004. Study of the tribological behaviors of S, P-containing triazine derivatives as additives in rapeseed oil. Wear 257, 389-394.
[10] Kerni, L., Raina, A., Haq, M.I.U, 2019. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 426, 819-827.
[11] Kinoshita, H., Nishina, Y., Alias, A.A., Fujii, M, 2014. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720-723. doi: 10.1016/j.carbon.2013.08.045
[12] Lei, H., Guan, W.C., Luo, J.B., 2002. Tribological behavior of fullerene-styrene sulfonic acid copolymer as water-based lubricant additive. Wear 252, 345-350.
[13] Shahnazar, S., Bagheri, S., Abd Hamid, S.B., 2016. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrog. Energy 41, 3153-3170. doi: 10.1016/j.ijhydene.2015.12.040
[14] Wan, Y., Xue, Q.J., 1995. Friction and wear characteristics of p-containing antiwear and extreme pressure additives in the sliding of steel against aluminum alloy. Wear 188, 27-32. doi: 10.1016/0043-1648(94)06589-6
[15] Wang, Y.R., Yu, Q.L., Cai, M.R., Zhou, F., Liu, W.M., 2018. Halide-free PN ionic liquids surfactants as additives for enhancing tribological performance of water-based liquid. Tribol. Int. 128, 190-196. doi: 10.1016/j.triboint.2018.07.018
[16] Wang, Y.X., Du, Y.Y., Deng, J.N., Wang, Z.P., 2019. Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets. Colloids Surfaces A: Physicochem. Eng. Aspects 562, 321-328.
[17] Wu, H., Jia, F.H., Zhao, J.W., Huang, S.Q., Wang, L.Z., Jiao, S.H., Huang, H., Jiang, Z.Y., 2019a. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear 426/427, 792-804. doi: 10.1016/j.wear.2018.11.023
[18] Wu, P., Chen, X.C., Zhang, C.H., Luo, J.B, 2019b. Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water. Tribol. Int. 132, 177-184. doi: 10.1016/j.triboint.2018.12.021
[19] Wu, Y.L., Zeng, X.Q., Ren, T.H., de Vries, E., van der Heide, E, 2017. The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion. Tribol. Int. 105, 304-316. doi: 10.1016/j.triboint.2016.10.024
[20] Wu, Z.M., Guo, Z.W., Yuan, C.Q., 2019c. Influence of polyethylene wax on wear resistance for polyurethane composite material under low speed water-lubricated conditions. Wear 426/427, 1008-1017.
[21] Xia, W.Z., Zhao, J.W., Wu, H., Jiao, S.H., Zhao, X.M., Zhang, X.M., Xu, J.Z., Jiang, Z.Y, 2018. Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles. Wear 396, 162-171.
[22] Yang, Y., Zhang, C.H., Wang, Y., Dai, Y.J., Luo, J.B., 2016. Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribol. Int. 95, 27-34. doi: 10.1016/j.triboint.2015.10.031
[23] Yu, Q.L., Zhang, C.Y., Dong, R., Shi, Y.J., Wang, Y.R., Bai, Y.Y., Zhang, J.Y., Cai, M.R., Zhou, F., 2019. Novel N, P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance. Tribol. Int. 132, 118-129. doi: 10.1016/j.triboint.2018.12.002
[24] Zhang, S.M., Zhang, C.H., Chen, X.C., Li, K., Jiang, J.M., Yuan, C.Q., Luo, J.B., 2019. XPS and ToF-SIMS analysis of the tribochemical absorbed films on steel surfaces lubricated with diketone. Tribol. Int. 130, 184-190. doi: 10.1016/j.triboint.2018.09.018
[25] Zheng, G.L., Ding, T.M., Huang, Y.X., Zheng, L., Ren, T.H., 2018. Fatty acid based phosphite ionic liquids as multifunctional lubricant additives in mineral oil and refined vegetable oil. Tribol. Int. 123, 316-324. doi: 10.1016/j.triboint.2018.03.028