[1] Akien G R, Qi L, Horváth I T, 2012. Molecular mapping of the acid catalysed dehydration of fructose. Chemical Communications, 48(47):5850. DOI:10.1039/c2cc31689g.
[2] Amarasekara A S, Wiredu B, 2015. Acidic ionic liquid catalyzed liquefaction of cellulose in ethylene glycol; identification of a new cellulose derived cyclopentenone derivative. Industrial & Engineering Chemistry Research, 54(3):824-831. DOI:10.1021/ie504544s.
[3] Antal M J Jr, Mok W S L, Richards G N, 1990. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Research, 199(1):91-109. DOI:10.1016/0008-6215(90)84096-d.
[4] Arni S A, 2018. Extraction and isolation methods for lignin separation from sugarcane bagasse:a review. Industrial Crops and Products, 115:330-339. DOI:10.1016/j.indcrop. 2018.02.012.
[5] Capunitan J A, Capareda S C, 2013. Characterization and separation of corn stover bio-oil by fractional distillation. Fuel, 112:60-73. DOI:10.1016/j.fuel.2013.04.079.
[6] Caratzoulas S, Vlachos D G, 2011. Converting fructose to 5-hydroxymethylfurfural:a quantum mechanics/molecular mechanics study of the mechanism and energetics. Carbohydrate Research, 346(5):664-672. DOI:10.1016/j.carres.2011.01.029.
[7] Chang C, Ma X J, Cen P L, 2006. Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chinese Journal of Chemical Engineering, 14(5):708-712. DOI:10.1016/s1004-9541(06)60139-0.
[8] Choudhary V, Mushrif S H, Ho C et al., 2013. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society, 135(10):3997-4006. DOI:10.1021/ja3122763.
[9] Collard F, Blin J, 2014. A review on pyrolysis of biomass constituents:Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38:594-608. DOI:10.1016/j.rser.2014.06.013.
[10] Deng L, Li J, Lai D M, et al., 2009. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 Supply. Angewandte Chemie, 121(35):6651-6654. DOI:10.1002/ange.200902281.
[11] Deng L, Zhao Y, Li J, et al., 2010. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10):1172-1175. DOI:10.1002/cssc.201000163.
[12] Deng W P, Liu M, Zhang Q H, et al., 2010. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chemical Communications, 46(15):2668. DOI:10.1039/b925723c.
[13] Deng W P, Zhang Q H, Wang Y, 2015. Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C C bond cleavage. Journal of Energy Chemistry, 24(5):595-607. DOI:10.1016/j.jechem.2015.08.016.
[14] Dora S, Bhaskar T, Singh R, et al., 2012. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresource Technology, 120:318-321. DOI:10.1016/j.biortech.2012.06.036.
[15] Feng H, Zheng Z F, Huang Y B, et al., 2011. Liquefaction of cellulose in the presence of phenol and main reaction pathway of its liquefied products. Advanced Materials Research, 236/237/238:334-340. DOI:10.4028/www.scientific. net/amr.236-238.334.
[16] Feng J F, Jiang J C, Xu J M, et al., 2015. One-step method to produce methyl-d-glucoside from lignocellulosic biomass. RSC Advances, 5(48):38783-38791. DOI:10.1039/c5ra04514b.
[17] Garcés D, Díaz E, Ordóñez S, 2017. Aqueous phase conversion of hexoses into 5-hydroxymethylfurfural and levulinic acid in the presence of hydrochloric acid:mechanism and kinetics. Industrial & Engineering Chemistry Research, 56(18):5221-5230. DOI:10.1021/acs.iecr.7b00952.
[18] Grisel R J H, van der Waal J C, de Jong E, et al., 2014. Acid catalysed alcoholysis of wheat straw:towards second generation furan-derivatives. Catalysis Today, 223:3-10. DOI:10.1016/j.cattod.2013.07.008.
[19] Horvat J, Klaić B, Metelko B, et al., 1985. Mechanism of levulinic acid formation. Tetrahedron Letters, 26(17):2111-2114. DOI:10.1016/s0040-4039(00)94793-2.
[20] Hu J B, Du Z X, Min E Z, 2012. Progress in research of reaction mechanism concerning hydrothermal liquefaction of biomass. Petroleum Processing and Petrochemicals, 43(4):87-92.
[21] Huber G W, Iborra S, Corma A, 2006. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering. Chemical Reviews, 106(9):4044-4098. DOI:10.1021/cr068360d.
[22] Isa K M, Abdullah T A T, Ali U F M, 2018. Hydrogen donor solvents in liquefaction of biomass:a review. Renewable and Sustainable Energy Reviews, 81:1259-1268. DOI:10.1016/j.rser.2017.04.006.
[23] Jiang Z C, Zhao P P, Hu C W, 2018. Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining:a review. Bioresource Technology, 256:466-477. DOI:10.1016/j.biortech.2018.02.061.
[24] Kang S M, Li X L, Fan J, et al., 2013. Hydrothermal conversion of lignin:A review. Renewable and Sustainable Energy Reviews, 27:546-558. DOI:10.1016/j.rser.2013.07.013.
[25] Kumar S, Lange J, van Rossum G, et al., 2015. Liquefaction of lignocellulose:Do basic and acidic additives help out? Chemical Engineering Journal, 278:99-104. DOI:10.1016/j.cej.2014.12.026.
[26] Li H, Fang Z, Luo J, et al., 2017. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B:Environmental, 200:182-191. DOI:10.1016/j.apcatb.2016.07.007.
[27] Li J M, Jiang Z C, Hu L B, et al., 2014. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem, 7(9):2482-2488. DOI:10.1002/cssc.201402384.
[28] Li W, XIE X N, TANG C Z, et al., 2016. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol. Journal of Fuel Chemistry and Technology, 44(4):415-421. DOI:10.1016/S1872-5813(16) 30021-4.
[29] Li Z H, Su K M, Ren J, et al., 2018. Direct catalytic conversion of glucose and cellulose. Green Chemistry, 20(4):863-872. DOI:10.1039/c7gc03318d.
[30] Lin L, 2004. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymers, 57(2):123-129. DOI:10.1016/j.carbpol.2004.01.014.
[31] Lindstrom J K, Proano-Aviles J, Johnston P A, et al., 2019. Competing reactions limit levoglucosan yield during fast pyrolysis of cellulose. Green Chemistry, 21(1):178-186. DOI:10.1039/c8gc03461c.
[32] Liu Y X, Sun B, Zheng X F, et al., 2018. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 247:859-863. DOI:10.1016/j. biortech.2017.08.059.
[33] Lu Q, Hu B, Zhang Z X, et al., 2018. Mechanism of cellulose fast pyrolysis:the role of characteristic chain ends and dehydrated units. Combustion and Flame, 198:267-277. DOI:10.1016/j.combustflame.2018.09.025.
[34] Luo Z, Wang S, Wang Q, et al., 2013. Biomass utilization for liquid fuel production. In:Biomass Utilization for Liquid Fuel Production. Beijing:Chemical Industry Press, 16-18.
[35] Ma X J, Yang X F, Zheng X, et al., 2014. Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresource Technology, 161:215-220. DOI:10.1016/j.biortech.2014.03.044.
[36] Ma Y, Tan W H, Wang K, et al., 2017. An insight into the selective conversion of bamboo biomass to ethyl glycosides. ACS Sustainable Chemistry & Engineering, 5(7):5880-5886. DOI:10.1021/acssuschemeng.7b00618.
[37] Mellmer M A, Sanpitakseree C, Demir B, et al., 2018. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nature Catalysis, 1(3):199-207. DOI:10.1038/s41929-018-0027-3.
[38] Mika L T, Cséfalvay E, Németh Á, 2018. Catalytic conversion of carbohydrates to initial platform chemicals:chemistry and sustainability. Chemical Reviews, 118(2):505-613. DOI:10.1021/acs.chemrev.7b00395.
[39] Patil S K R, Lund C R F, 2011. Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy & Fuels, 25(10):4745-4755. DOI:10.1021/ef2010157.
[40] Pileidis F D, Titirici M, 2016. Levulinic acid biorefineries:new challenges for efficient utilization of biomass. ChemSusChem, 9(6):562-582. DOI:10.1002/cssc.201501405.
[41] Pritchard J, Filonenko G A, van Putten R, et al., 2015. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives:history, advances and future directions. Chemical Society Reviews, 44(11):3808-3833. DOI:10.1039/c5cs00038f.
[42] Qi L, Horváth I T, 2012. Catalytic conversion of fructose to γ-valerolactone in γ-valerolactone. ACS Catalysis, 2(11):2247-2249. DOI:10.1021/cs300428f.
[43] Rahimi A, Ulbrich A, Coon J J, et al., 2014. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 515(7526):249-252. DOI:10.1038/nature13867.
[44] Rasmussen H, Sørensen H R, Meyer A S, 2014. Formation of degradation compounds from lignocellulosic biomass in the biorefinery:sugar reaction mechanisms. Carbohydrate Research, 385:45-57. DOI:10.1016/j.carres.2013.08.029.
[45] Shen F, Smith R L, Li L Y, et al., 2017. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustainable Chemistry & Engineering, 5(3):2421-2427. DOI:10.1021/acssuschemeng.6b02765.
[46] Shi Y, Li J D, Wang J, et al., 2016a. Kinetic and product composition study on the cellulose liquefaction in polyhydric alcohols. Bioresource Technology, 214:419-425. DOI:10.1016/j.biortech.2016.04.127.
[47] Shi Y, Xia X Y, Li J D, et al., 2016b. Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents. Bioresource Technology, 221:102-110. DOI:10.1016/j. biortech.2016.09.008.
[48] Shuai L, Amiri M T, Questell-Santiago Y M, et al., 2016. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 354(6310):329-333. DOI:10.1126/science.aaf7810.
[49] Staš M, Kubička D, Chudoba J, et al., 2014. Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy & Fuels, 28(1):385-402. DOI:10.1021/ef402047y.
[50] Sweygers N, Somers M H, Appels L, 2018. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology. Journal of Environmental Management, 219:95-102. DOI:10.1016/j.jenvman.2018.04.105.
[51] Tang Z C, Deng W P, Wang Y L, et al., 2014. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem, 7(6):1557-1567. DOI:10.1002/cssc.201400150.
[52] Timell T E, 1964. The acid hydrolysis of glycosides:I. general conditions and the effect of the nature of the aglycone. Canadian Journal of Chemistry, 42(6):1456-1472. DOI:10.1139/v64-221.
[53] Walker T W, Chew A K, Li H X, et al., 2018. Correction:universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy & Environmental Science, 11(6):1639. DOI:10.1039/c7ee03432f.
[54] Wang P, Zhan S H, Yu H B, 2010. Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Advanced Materials Research, 96:183-187. DOI:10.4028/www.scientific.net/amr.96.183.
[55] Wang S R, Guo X J, Liang T, et al., 2012. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technology, 104:722-728. DOI:10.1016/j.biortech.2011.10.078.
[56] Xu J M, Jiang J C, Hse C, et al., 2012. Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chemistry, 14(10):2821. DOI:10.1039/c2gc35805k.
[57] Xu J M, Jiang J C, Lv W, et al., 2010. Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase. Biomass and Bioenergy, 34(7):1059-1063. DOI:10.1016/j.biombioe.2010.01.040.
[58] Xu W R, Zhang J, Zheng F Y, et al., 2018. Research progress on mechanisms of acid-catalyzed cellulose and chitin liquefaction to small molecular chemicals under atmospheric pressure. CIESC Journal, 69(4):1288-1298.
[59] Yamada T, Ono H, 1999. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology, 70(1):61-67. DOI:10.1016/s0960-8524(99)00008-5.
[60] Yang G, Pidko E A, Hensen E J M, 2012. Mechanism of Brønsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis, 295:122-132. DOI:10.1016/j.jcat. 2012.08.002.
[61] Yang L, Tsilomelekis G, Caratzoulas S, et al., 2015. Mechanism of brønsted acid-catalyzed glucose dehydration. ChemSusChem, 8(8):1334-1341. DOI:10.1002/cssc.201403264.
[62] Yang S Q, Lu X M, Zhang Y Q, et al., 2018. Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 25(6):3241-3254. DOI:10.1007/s10570-018-1785-4.
[63] Yu I K M, Tsang D C W, 2017. Conversion of biomass to hydroxymethylfurfural:a review of catalytic systems and underlying mechanisms. Bioresource Technology, 238:716-732. DOI:10.1016/j.biortech.2017.04.026.
[64] Zhang J J, Liao H T, Lu Q, et al., 2013. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural. Journal of Fuel Chemistry and Technology, 41(11):1303-1309. DOI:10.1016/s1872-5813(14)60001-3.
[65] Zhang J, Das A, Assary R S, et al., 2016. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO43-/niobic acid, or sulfuric acid catalysts. Applied Catalysis B:Environmental, 181:874-887. DOI:10.1016/j.apcatb.2014.10.056.
[66] Zhang J, Weitz E, 2012. An in situ NMR study of the mechanism for the catalytic conversion of fructose to 5-hydroxymethylfurfural and then to levulinic acid using 13C labeled d-fructose. ACS Catalysis, 2(6):1211-1218. DOI:10.1021/cs300045r.
[67] Zhang Y Y, Liu C, Chen X, 2015. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. Journal of Analytical and Applied Pyrolysis, 113:621-629. DOI:10.1016/j.jaap. 2015.04.010.
[68] Zhang Y, Hu B, Lu Q, et al., 2014. A review on the formation mechanism of levoglucosan during fast pyrolysis of cellulose. Biomass Chemical Engineering, 48(3):53-59.
[69] Zheng W Z, Cui Y J, Xu Z M et al., 2018. Cellulose transformation into methyl glucosides catalyzed by H3PW12O40:Enhancement of ionic liquid pretreatment. The Canadian Journal of Chemical Engineering, 96(6):1250-1255. DOI:10.1002/cjce.23057.
[70] Zuo Y, Zhang Y, Fu Y, 2014. Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem, 6(3):753-757. DOI:10.1002/cctc.201300956.