[1] Aaltonen O, Jauhiainen O, 2009. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate Polymers, 75(1):125-129. DOI:10.1016/j. carbpol.2008.07.008.
[2] Altaner C M, Thomas L H, Fernandes A N, et al., 2014. How cellulose stretches:synergism between covalent and hydrogen bonding. Biomacromolecules, 15(3):791-798. DOI:10.1021/bm401616n.
[3] Ashori A, Nourbakhsh A, 2009. Effects of nanoclay as a reinforcement filler on the physical and mechanical properties of wood-based composite. Journal of Composite Materials, 43(18):1869-1875. DOI:10.1177/0021998309340936.
[4] Chen Y P, Cai T L, Dang B K, et al., 2018a. The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Scientific Reports, 8:12633. DOI:10.1038/s41598-018-23497-x.
[5] Chen Y P, Dang B K, Jin C D, et al., 2019. Processing lignocellulose-based composites into an ultrastrong structural material. ACS Nano, 13(1):371-376. DOI:10.1021/acsnano. 8b06409.
[6] Chen Y P, Sheng C M, Dang B K, et al., 2018b. High mechanical property of laminated electromechanical sensors by carbonized nanolignocellulose/graphene composites. ACS Applied Materials & Interfaces, 10(8):7344-7351. DOI:10.1021/acsami.7b19353.
[7] Chen Y P, Wang H W, Dang B K et al., 2017. Bio-inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Scientific Reports, 7:1823. DOI:10.1038/s41598-017-02082-8.
[8] Dang B K, Chen Y P, Shen X P, et al., 2017. Fabrication of a nano-ZnO/polyethylene/wood-fiber composite with enhanced microwave absorption and photocatalytic activity via a facile hot-press method. Materials, 10(11):1267. DOI:10.3390/ma10111267.
[9] Dang B K, Chen Y P, Wang H W, et al., 2018. Preparation of high mechanical performance nano-Fe3O4/wood fiber binderless composite boards for electromagnetic absorption via a facile and green method. Nanomaterials, 8(1):52. DOI:10.3390/nano8010052.
[10] Deepa B, Abraham E, Cordeiro N, et al., 2015. Utilization of various lignocellulosic biomass for the production of nanocellulose:a comparative study. Cellulose, 22(2):1075-1090. DOI:10.1007/s10570-015-0554-x.
[11] Fan Y M, Saito T, Isogai A, 2008. Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules, 9(7):1919-1923. DOI:10.1021/bm800178b.
[12] Gao W, Shi Y Q, Zuo L, et al., 2016. Rough-surfaced molybdenum carbide nanobeads grown on graphene-coated carbon nanofibers membrane as free-standing hydrogen evolution reaction electrocatalyst. Materials Today Chemistry, 1/2:32-39. DOI:10.1016/j.mtchem.2016.10.003.
[13] Govindan B, Swarna Latha B, Nagamony P, et al., 2017. Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma. Nanomaterials, 7(6):138. DOI:10.3390/nano7060138.
[14] Ifuku S, 2014. Chitin and chitosan nanofibers:preparation and chemical modifications. Molecules, 19(11):18367-18380. DOI:10.3390/molecules191118367.
[15] Ifuku S, Nogi M, Abe K, et al., 2011. Simple preparation method of chitin nanofibers with a uniform width of 10-20 nm from prawn shell under neutral conditions. Carbohydrate Polymers, 84(2):762-764. DOI:10.1016/j.carbpol.2010.04.039.
[16] Ifuku S, Saimoto H, 2012. Chitin nanofibers:preparations, modifications, and applications. Nanoscale, 4(11):3308. DOI:10.1039/c2nr30383c.
[17] João C F C, Baptista A C, Ferreira I M M, et al., 2016. Natural nanofibres for composite applications. Textile Science and Clothing Technology. Singapore:Springer Singapore, 261-299.
[18] Laemsak N, Okuma M, 2000. Development of boards made from oil palm frond Ⅱ:properties of binderless boards from steam-exploded fibers of oil palm frond. Journal of Wood Science, 46(4):322-326. DOI:10.1007/bf00766224
[19] Li J, Lu Y, Yang D J, et al., 2011. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules, 12(5):1860-1867. DOI:10.1021/bm200205z.
[20] Lu Y, Qiu J, Sun Q F, et al., 2014. Preparation and characterization of lignocellulose aerogel in ionic liquid. Science & Technology Review, 32(4):29-33. DOI:10.3981/j.issn.1000-7857.2014.h1.003.
[21] Lu Y, Sun Q F, She X L, et al., 2013. Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydrate Polymers, 98(2):1497-1504. DOI:10.1016/j.carbpol.2013.07.038.
[22] Lu Y, Sun Q F, Yang D J, et al., 2012. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. Journal of Materials Chemistry, 22(27):13548. DOI:10.1039/c2jm31310c.
[23] Mussana H, Yang X, Tessima M, et al., 2018. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Industrial Crops and Products, 113:225-233. DOI:10.1016/j.indcrop.2018.01.025.
[24] Nogi M, Kurosaki F, Yano H, et al., 2010. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydrate Polymers, 81(4):919-924. DOI:10.1016/j.carbpol.2010.04.006.
[25] O'Brien J P, Fahnestock S R, Termonia Y, et al., 1998. Nylons from nature:synthetic analogs to spider silk. Advanced Materials, 10(15):1185-1195. DOI:10.1002/(sici)1521-4095(199810)10:15<1185::aid-adma1185>3.3.co; 2-k.
[26] Okuda N, Sato M, 2004. Manufacture and mechanical properties of binderless boards from kenaf core. Journal of Wood Science, 50(1):53-61. DOI:10.1007/s10086-003-0528-8.
[27] Pillai C K S, Paul W, Sharma C P, 2009. Chitin and chitosan polymers:Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7):641-678. DOI:10.1016/j. progpolymsci.2009.04.001.
[28] Quintana G, Velásquez J, Betancourt S, et al., 2009. Binderless fiberboard from steam exploded banana bunch. Industrial Crops and Products, 29(1):60-66. DOI:10.1016/j.indcrop. 2008.04.007.
[29] Rybiński P, Syrek B, Masłowski M, et al., 2018. Influence of lignocellulose fillers on properties natural rubber composites. Journal of Polymers and the Environment, 26(6):2489-2501. DOI:10.1007/s10924-017-1144-9.
[30] Sitz E D, Bajwa D S, 2015. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Industrial Crops and Products, 75:200-205. DOI:10.1016/j.indcrop.2015.05.006.
[31] Spinacé M A S, Lambert C S, Fermoselli K K G, et al., 2009. Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers, 77(1):47-53. DOI:10.1016/j.carbpol.2008.12.005.
[32] Wang Z, Shen X P, Yan Y T, et al., 2018. Facile fabrication of a PDMS@stearic acid-Al(OH)3 coating on lignocellulose composite with superhydrophobicity and flame retardancy. Applied Surface Science, 450:387-395. DOI:10.1016/j. apsusc.2018.04.220.
[33] Zargar V, Asghari M, Dashti A, 2015. A review on chitin and chitosan polymers:structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3):204-226. DOI:10.1002/cben.201400025.
[34] Zhu H L, Zhu S Z, Jia Z, et al., 2015. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the National Academy of Sciences of the United States of America, 112(29):8971-8976. DOI:10.1073/pnas. 1502870112.