[1] Abdul Khalil H P S, Siti Alwani M, Ridzuan R, et al. 2008. Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polymer-Plastics Technology and Engineering, 47(3):273-280. DOI:10.1080/03602550701866840.
[2] Bergfjord C, Holst B. 2010. A procedure for identifying textile bast fibres using microscopy:Flax, nettle/ramie, hemp and jute. Ultramicroscopy, 110(9):1192-1197. DOI:10.1016/j.ultramic.2010.04.014.
[3] Brienzo M, Abud Y, Ferreira S, et al. 2016. Characterization of anatomy, lignin distribution, and response to pretreatments of sugarcane culm node and internode. Industrial Crops and Products, 84: 305-313. DOI: 10.1016/j.indcrop.20youqi-16.01.039.
[4] Canilha L, Santos V T O, Rocha G J M et al. 2011. A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology & Biotechnology, 38(9):1467-1475. DOI:10.1007/s10295-010-0931-2.
[5] Castillo R D P, Araya J, Troncoso E, et al. 2015. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process. Analytica Chimica Acta, 866:10-20. DOI:10.1016/j.aca.2015.01.032.
[6] Chen L J, Li J B, Lu M S, et al. 2016. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydrate Polymers, 141:1-9. DOI:10.1016/j.carbpol. 2015.12.079.
[7] Chen Y X, Su N, Zhang K T, et al. 2018. Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of Luffa sponge fiber bundles. Industrial Crops and Products, 123:341-352. DOI:10.1016/j.indcrop.2018. 06.079.
[8] Donohoe B S, Decker S R, Tucker M P, et al. 2008. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101(5):913-925. DOI:10.1002/bit.21959.
[9] Engels F. 1998. Alfalfa stem tissues:cell-wall development and lignification. Annals of Botany, 82(5):561-568. DOI:10.1006/anbo.1998.0705.
[10] Evert R F. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development (3rd edition). Hoboken, New Jersey: John Wiley & Sons, Inc.
[11] Gierlinger N, Keplinger T, Harrington M. 2012. Imaging of plant cell walls by confocal Raman microscopy. Nature Protocols, 7(9):1694-1708. DOI:10.1038/nprot.2012.092.
[12] Gu H Q, An R X, Bao J. 2018. Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis. Chemical Engineering Journal, 352:198-205. DOI:10.1016/j.cej.2018.06.145.
[13] Haugan E, Holst B. 2013. Determining the fibrillar orientation of bast fibres with polarized light microscopy:the modified Herzog test (red plate test) explained. Journal of Microscopy, 252(2):159-168. DOI:10.1111/jmi.12079.
[14] Himmel M E, Ding S Y, Johnson D K, et al. 2007. Biomass recalcitrance:engineering plants and enzymes for biofuels production. Science, 315(5813):804-807. DOI:10.1126/science.1137016.
[15] Horikawa Y, Hirano S, Mihashi A, et al. 2019. Prediction of lignin contents from infrared spectroscopy:chemical digestion and lignin/biomass ratios of Cryptomeria japonica. Applied Biochemistry and Biotechnology. DOI:10.1007/s12010-019-02965-8
[16] Ibbett R, Gaddipati S, Davies S, et al. 2011. The mechanisms of hydrothermal deconstruction of lignocellulose:New insights from thermal-analytical and complementary studies. Bioresource Technology, 102(19):9272-9278. DOI:10.1016/j.biortech. 2011.06.044.
[17] Ji Z, Ma J F, Xu F. 2014. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment. Microscopy and Microanalysis, 20(2):566-576. DOI:10.1017/s1431927614000063.
[18] Ji Z, Zhang X, Ling Z, et al. 2015. Visualization of Miscanthus ×giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. Biotechnology for Biofuels, 8:103. DOI:10.1186/s13068-015-0282-3.
[19] Ji Z, Zhang X, Ling Z, et al. 2016. Tissue specific response of Miscanthus ×giganteus to dilute acid pretreatment for enhancing cellulose digestibility. Carbohydrate Polymers, 154:247-256. DOI:10.1016/j.carbpol.2016.06.086.
[20] Karimi K, Taherzadeh M J. 2016. A critical review of analytical methods in pretreatment of lignocelluloses:Composition, imaging, and crystallinity. Bioresource Technology, 200:1008-1018. DOI:10.1016/j.biortech.2015.11.022.
[21] Ling Z, Chen S, Zhang X, et al. 2017. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. Bioresource Technology, 224:611-617. DOI:10.1016/j.biortech.2016.10.064.
[22] Loow Y L, Wu T Y, Md Jahim J, et al. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23(3):1491-1520. DOI:10.1007/s10570-016-0936-8.
[23] Mou H Y, Li B, Fardim P. 2014. Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy & Fuels, 28(7):4288-4293. DOI:10.1021/ef5001634.
[24] Mou H Y, Orblin E, Kruus K, et al. 2013. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. Bioresource Technology, 142:540-545. DOI:10.1016/j.biortech.2013.05.046.
[25] Murata Y, Kubo S, Togawa E, et al. 2015. Detection of vascular bundles using cell wall birefringence on exposure to polarized light. Industrial Crops and Products, 65:190-197. DOI:10.1016/j.indcrop.2014.11.055.
[26] Oh S Y, Yoo D I, Shin Y, et al. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3):417-428. DOI:10.1016/j. carres.2004.11.027.
[27] Phitsuwan P, Sakka K, Ratanakhanokchai K. 2016. Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresource Technology, 218:247-256. DOI:10.1016/j.biortech.2016.06. 089.
[28] Raj T, Gaur R, Lamba B Y, et al. 2018. Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility. Bioresource Technology, 249:139-145. DOI:10.1016/j.biortech.2017.09.202.
[29] Richter S, Müssig J, Gierlinger N. 2011. Functional plant cell wall design revealed by the Raman imaging approach. Planta, 233(4):763-772. DOI:10.1007/s00425-010-1338-z.
[30] Simonović Radosavljević J, Bogdanović Pristov J, Lj Mitrović A, et al. 2017. Parenchyma cell wall structure in twining stem of Dioscorea balcanica. Cellulose, 24(11):4653-4669. DOI:10.1007/s10570-017-1460-1.
[31] Singh J, Suhag M, Dhaka A. 2015. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods:A review. Carbohydrate Polymers, 117:624-631. DOI:10.1016/j.carbpol.2014.10.012.
[32] Sluiter A, Hames B, Ruiz R, et al. 2012. Determination of structural carbohydrates and lignin in biomass. US:National Renewable Energy Laboratory, 1-15.
[33] Sun Q N, Foston M, Sawada D, et al. 2014. Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose, 21(4):2419-2431. DOI:10.1007/s10570-014-0303-6.
[34] Thygesen L G, Hidayat B J, Johansen K S, et al. 2011. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. Journal of Industrial Microbiology & Biotechnology, 38(8):975-983. DOI:10.1007/s10295-010-0870-y.
[35] Tjeerdsma B F, Militz H. 2005. Chemical changes in hydrothermal treated wood:FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkstoff, 63(2):102-111. DOI:10.1007/s00107-004-0532-8.
[36] Wu X X, Huang C, Zhai S C, et al. 2018. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction. Bioresource Technology, 251:374-380. DOI:10.1016/j.biortech.2017.12. 066.
[37] Yang G, Wang J L. 2019. Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresource Technology, 275:10-18. DOI:10.1016/j.biortech.2018.12.013.
[38] You T T, Zhang L M, Xu F. 2016. Progressive deconstruction of Arundo donax Linn. to fermentable sugars by acid catalyzed ionic liquid pretreatment. Bioresource Technology, 199:271-274. DOI:10.1016/j.biortech.2015.08.152.
[39] Yu Z, Li J L, Li G Y. 2009. Analysis on the potential capacity of exploiting giant reed as an energy forage. Pratacultural Science, 26(6):62-69.
[40] Zhai S C, Horikawa Y, Imai T, et al. 2014. Cell wall ultrastructure of palm leaf fibers. IAWA Journal, 35(2):127-137. DOI:10.1163/22941932-00000054.
[41] Zhang X M, Qu T J, Mosier N S, et al. 2018. Cellulose modification by recyclable swelling solvents. Biotechnology for Biofuels, 11:191. DOI:10.1186/s13068-018-1191-z.
[42] Zhu L, O'Dwyer J P, Chang V S, et al. 2008. Structural features affecting biomass enzymatic digestibility. Bioresource Technology, 99(9):3817-3828. DOI:10.1016/j.biortech. 2007.07.033.