[1] Auclair N, Kaboorani A, Riedl B, et al. 2015. Acrylated betulin as a comonomer for bio-based coatings. Part I:Characterization, photo-polymerization behavior and thermal stability. Industrial Crops and Products, 76:530-537. DOI:10.1016/j.indcrop.2015.07.020.
[2] Auclair N, Kaboorani A, Riedl B, et al. 2016. Acrylated betulin as a comonomer for bio-based coatings. Part Ⅱ:Mechanical and optical properties. Industrial Crops and Products, 82:118-126. DOI:10.1016/j.indcrop.2015.11.081.
[3] Chen X L, Huo L L, Jiao C M, et al. 2013. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. Journal of Analytical and Applied Pyrolysis, 100: 186-191. DOI: 10.1016/j.jaap.2012.12.017.
[4] Dai J Y, Jiang Y H, Liu X Q, et al. 2016a. Synthesis of eugenol-based multifunctional monomers via a thiol-ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Advances, 6(22):17857-17866. DOI:10.1039/c6ra01420h.
[5] Dai J Y, Liu X Q, Ma S Q, et al. 2016b. Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate. Progress in Organic Coatings, 97:210-215. DOI:10.1016/j.porgcoat.2016.04.014.
[6] Dai J Y, Ma S Q, Liu X Q et al. 2015a. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 78:49-54. DOI:10.1016/j.porgcoat.2014.10.007.
[7] Dai J Y, Ma S Q, Wu Y G, et al. 2015b. High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 87:197-203. DOI:10.1016/j.porgcoat.2015.05.030.
[8] Dai J Y, Ma S Q, Zhu L X, et al. 2017. UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer, 108:215-222. DOI:10.1016/j.polymer.2016.11.068.
[9] Dai J Y, Yang S M, Teng N, et al. 2018. Synthesis of eugenol-based silicon-containing benzoxazines and their applications as bio-based organic coatings. Coatings, 8(3):88. DOI:10.3390/coatings8030088.
[10] Feng G D, Hu L H, Ma Y, et al. 2018. An efficient bio-based plasticizer for poly (vinyl chloride) from waste cooking oil and citric acid:Synthesis and evaluation in PVC films. Journal of Cleaner Production, 189:334-343. DOI:10.1016/j.jclepro.2018.04.085.
[11] Hu Y, Liu C G, Shang Q Q, et al. 2018a. Synthesis and characterization of novel renewable Castor oil-based UV-curable polyfunctional polyurethane acrylate. Journal of Coatings Technology and Research, 15(1):77-85. DOI:10.1007/s11998-017-9948-z.
[12] Hu Y, Shang Q Q, Tang J J, et al. 2018b. Use of cardanol-based acrylate as reactive diluent in UV-curable Castor oil-based polyurethane acrylate resins. Industrial Crops and Products, 117:295-302. DOI:10.1016/j.indcrop.2018.02.053.
[13] Hu Y, Shang Q Q, Wang C N, et al. 2018c. Renewable epoxidized cardanol-based acrylate as a reactive diluent for UV-curable resins. Polymers for Advanced Technologies, 29(6):1852-1860. DOI:10.1002/pat.4294.
[14] Jia P Y, Feng G D, Bo C Y, et al. 2018. A composition of phosphaphenanthrene groups-containing Castor-oil-based phosphate plasticizer for PVC:Synthesis, characterization and property. Journal of Industrial and Engineering Chemistry, 60:192-205. DOI:10.1016/j.jiec.2017.11.006.
[15] Jia P Y, Hu L H, Zhang M, et al. 2016. TG-FTIR and TG-MS analysis applied to study the flame retardancy of PVC-Castor oil-based chlorinated phosphate ester blends. Journal of Thermal Analysis and Calorimetry, 124(3):1331-1339. DOI:10.1007/s10973-015-5199-3.
[16] Li K B, Shen Y D, Fei G Q, et al. 2015. Preparation and properties of Castor oil/pentaerythritol triacrylate-based UV curable waterborne polyurethane acrylate. Progress in Organic Coatings, 78:146-154. DOI:10.1016/j.porgcoat. 2014.09.012.
[17] Li P, Ma S Q, Dai J Y, et al. 2017. Itaconic acid as a green alternative to acrylic acid for producing a soybean oil-based thermoset:synthesis and properties. ACS Sustainable Chemistry & Engineering, 5(1):1228-1236. DOI:10.1021/acssuschemeng.6b02654.
[18] Liu C G, Dai Y, Hu Y, et al. 2016a. Highly functional unsaturated ester macromonomer derived from soybean oil:synthesis and copolymerization with styrene. ACS Sustainable Chemistry & Engineering, 4(8):4208-4216. DOI:10.1021/acssuschemeng.6b00700.
[19] Liu C G, Shang Q Q, Jia P Y, et al. 2016b. Tung oil-based unsaturated Co-ester macromonomer for thermosetting polymers:synergetic synthesis and copolymerization with styrene. ACS Sustainable Chemistry & Engineering, 4(6):3437-3449. DOI:10.1021/acssuschemeng.6b00466.
[20] Liu C G, Wang C N, Hu Y, et al. 2018. Castor oil-based polyfunctional acrylate monomers:Synthesis and utilization in UV-curable materials. Progress in Organic Coatings, 121:236-246. DOI:10.1016/j.porgcoat.2018.04.020.
[21] Liu H J, Lu W C, Liu S J. 2018. Development of acrylated soybean oil-based UV-curable coatings with high impact strength from low viscosity oligomer. Journal of Applied Polymer Science, 135(3):45698. DOI:10.1002/app.45698.
[22] Liu R, Luo J, Ariyasivam S, et al. 2017. High biocontent natural plant oil based UV-curable branched oligomers. Progress in Organic Coatings, 105:143-148. DOI:10.1016/j.porgcoat.2016.11.009.
[23] Liu R, Zhang X P, Zhu J J, et al. 2015. UV-curable coatings from multiarmed cardanol-based acrylate oligomers. ACS Sustainable Chemistry & Engineering, 3(7):1313-1320. DOI:10.1021/acssuschemeng.5b00029.
[24] Ma S Q, Jiang Y H, Liu X Q, et al. 2014. Bio-based tetrafunctional crosslink agent from Gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Advances, 4(44):23036. DOI:10.1039/c4ra01311e.
[25] Qian X D, Song L, Hu Y, et al. 2011. Combustion and thermal degradation mechanism of a novel intumescent flame retardant for epoxy acrylate containing phosphorus and nitrogen. Industrial & Engineering Chemistry Research, 50(4):1881-1892. DOI:10.1021/ie102196k.
[26] Sharmin E, Zafar F, Akram D, et al. 2015. Recent advances in vegetable oils based environment friendly coatings:A review. Industrial Crops and Products, 76:215-229. DOI:10.1016/j.indcrop.2015.06.022.
[27] Wang X L, Chen L, Wu J N, et al. 2017. Flame-retardant pressure-sensitive adhesives derived from epoxidized soybean oil and phosphorus-containing dicarboxylic acids. ACS Sustainable Chemistry & Engineering, 5(4):3353-3361. DOI:10.1021/acssuschemeng.6b03201.
[28] Wu Q, Hu Y, Tang J J, et al. 2018. High-performance soybean-oil-based epoxy acrylate resins:"Green" synthesis and application in UV-curable coatings. ACS Sustainable Chemistry & Engineering, 6(7):8340-8349. DOI:10.1021/acssuschemeng.8b00388.
[29] Zhang C Q, Garrison T F, Madbouly S A, et al. 2017. Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71:91-143. DOI:10.1016/j.progpolymsci.2016.12.009.
[30] Zhang Y H, Li Y Z, Wang L W, et al. 2017. Synthesis and characterization of methacrylated eugenol as a sustainable reactive diluent for a maleinated acrylated epoxidized soybean oil resin. ACS Sustainable Chemistry & Engineering, 5(10):8876-8883. DOI:10.1021/acssuschemeng.7b01673.
[31] Zhou X, Li Y, Fang C Q, et al. 2015. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink:A review. Journal of Materials Science & Technology, 31(7):708-722. DOI:10.1016/j.jmst.2015.03.002.