[1] Ahamed J U, Raiyan M F, Hossain M S, et al., 2016. Production of biogas from anaerobic digestion of poultry droppings and domestic waste using catalytic effect of silica gel. International Journal of Automotive and Mechanical Engineering, 13(2):3503-3517. DOI:10.15282/ijame.13.2.2016.17.0289.
[2] Al Seadi T, Rutz D, Prassl H, et al., 2008. Biogas handbook. Denmark: University of Southern Denmark Esbjerg.
[3] Aoyi O, Apollo S O, Akach J, et al., 2015. Integrated photo-catalytic and anaerobic treatment of industrial wastewater for biogas production. Vaal: Vaal University of Technology.
[4] Bagudo B U, Dangoggo S M, Hassan L G, et al., 2011. Influence of catalyst (yeast) on the biomethanization of selected organic waste materials. Nigerian Journal of Basic and Applied Sciences, 18(2):209-216. DOI:10.4314/njbas.v18i2.64313.
[5] Corro G, Pal U, Cebada S, 2014. Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment. Energy Science & Engineering, 2(4):177-187. DOI:10.1002/ese3.44.
[6] Faisal S, Yusuf Hafeez F, Zafar Y, et al., 2018. A review on nanoparticles as boon for biogas producers:nano fuels and biosensing monitoring. Applied Sciences, 9(1):59. DOI:10.3390/app9010059.
[7] Gumel S M, Yaro M N, 2013. Effects of concentration and catalyst on the kinetics of biogas production from cattle dung at thermophilic temperature. Chemistry and Materials Research, 3(7):9-17.
[8] Horn R, Schlögl R, 2015. Methane activation by heterogeneous catalysis. Catalysis Letters, 145(1):23-39. DOI:10.1007/s10562-014-1417-z.
[9] Ibitoye S E, 2018. Production and characterisation of fuel briquettes made from blend of corncob and rice husk. Ilorin: University of Ilorin.
[10] Izquierdo U, García-García I, Gutierrez Á, et al., 2018. Catalyst deactivation and regeneration processes in biogas tri-reforming process. the effect of hydrogen sulfide addition. Catalysts, 8(1):12. DOI:10.3390/catal8010012.
[11] Johnny A, Kumar Y T, Rao A T, 2018. Investigation study of biogas production using catalyst. International Journal of Pure and Applied Mathematics, 119(12):15829-15839.
[12] Jürgensen L, 2015. Dynamic biogas upgrading for integration of renewable energy from wind, biomass and solar. Copenhagen: Aalborg University.
[13] Nahar G, Mote D, Dupont V, 2017. Hydrogen production from reforming of biogas:Review of technological advances and an Indian perspective. Renewable and Sustainable Energy Reviews, 76:1032-1052. DOI:10.1016/j.rser.2017.02.031.
[14] Neelkanthan S, Sondhi H S, Mittal C P, 1976. Effect of temperature, inoculum and agitation on biogas production from cattle dung. Indian Journal of Dairy Science, 3(29):226-229.
[15] Pavithran D, Kannan C, Jayasingh T R, et al., 2015. A study on the influencing parameters on biogas production from Jack Fruit Waste Feedstock. International Journal of Engineering and Management Research, 5(2):10-13.
[16] Richards B K, Herndon F G, Jewell W J, et al., 1994. In situ methane enrichment in methanogenic energy crop digesters. Biomass and Bioenergy, 6(4):275-282. DOI:10.1016/0961-9534(94)90067-1.
[17] Sahu D M S, 2015. Effect of iron oxide nanoparticle in bio digestion of a portable food-waste digester. Journal of Chemical and Pharmaceutical Research, 79:353-359.
[18] Singh D, Pratap D, Vashishtha M, et al., 2010. Direct catalytic conversion of biogas methane to formaldehyde. International Journal of ChemTech Research, 2(1):467-482.
[19] Vasileiadis S, Ziaka Z, Tsimpa M, et al., 2012. New biogas renewable system for combined sofc-electricity generation with a membrane reactor. Global Journal of Researches in Engineering:Chemical Engineering, 12(1):1-13.
[20] Wang T, Zhang D, Dai L L, et al., 2016. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Scientific Reports, 6:25857. DOI:10.1038/srep25857.