[1] Abdulkhani,A.,Hojati Marvast,E.,Ashori,A.,Karimi,A.N.,2013. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr. Polym. 95,57-63.
[2] Abou-Saleh,R.H.,Hernandez-Gomez,M.C.,Amsbury,S.,Paniagua,C.,Bourdon,M.,Miyashima,S.,Helariutta,Y.,Fuller,M.,Budtova,T.,Connell,S.D.,Ries,M.E.,Benitez-Alfonso,Y.,2018. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat. Commun. 9,4538.
[3] Abushammala,H.,Krossing,I.,Laborie,M.P.,2015. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 134,609-616.
[4] Akiba,T.,Tsurumaki,A.,Ohno,H.,2017. Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem. 19,2260-2265.
[5] Asaadi,S.,Hummel,M.,Ahvenainen,P.,Gubitosi,M.,Olsson,U.,Sixta,H.,2018. Structural analysis of Ioncell-F fibres from birch wood. Carbohydr. Polym. 181,893-901.
[6] Becherini,S.,Mitmoen,M.,Tran,C.D.,2019. Natural sporopollenin microcapsules facilitated encapsulation of phase change material into cellulose composites for smart and biocompatible materials. ACS Appl. Mater. Interfaces 11,44708-44721.
[7] Berton,P.,Shen,X.P.,Rogers,R.D.,Shamshina,J.L.,2019.110th anniversary:high-molecular-weight chitin and cellulose hydrogels from biomass in ionic liquids without chemical crosslinking. Ind. Eng. Chem. Res. 58,19862-19876.
[8] Brandt,A.,Gräsvik,J.,Hallett,J.P.,Welton,T.,2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15,550.
[9] Buchtová,N.,Pradille,C.,Bouvard,J.L.,Budtova,T.,2019. Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15,7901-7908.
[10] Byrne,N.,Chen,J.Y.,Fox,B.,2014. Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J. Mater. Chem. A 2,15758-15762.
[11] Chang,L.M.,Zhang,J.M.,Chen,W.W.,Zhang,M.,Yin,C.C.,Tian,W.G.,Luo,Z.,Liu,W.L.,He,J.S.,Zhang,J.,2018. Controllable synthesis of cellulose benzoates for understanding of chiral recognition mechanism and fabrication of highly efficient chiral stationary phases. Anal. Methods 10,2844-2853.
[12] Chen,J.H.,Xu,J.K.,Wang,K.,Qian,X.R.,Sun,R.C.,2015a. Highly thermostable,flexible,and conductive films prepared from cellulose,graphite,and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 7,15641-15648.
[13] Chen,L.,Xin,J.Y.,Ni,L.L.,Dong,H.X.,Yan,D.X.,Lu,X.M.,Zhang,S.J.,2016. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chem. 18,2341-2352.
[14] Chen,W.W.,Ding,M.C.,Zhang,M.,Zhang,J.M.,Gao,X.,He,J.S.,Zhang,J.,2015c. Chiral separation abilities of homogeneously synthesized cellulose 3,5-dimethylphenylcarbamates:Influences of degree of substitution and molecular weight. Chin. J. Polym. Sci. 33,1633-1639.
[15] Chen,W.W.,Zhang,M.,Feng,Y.,Wu,J.,Gao,X.,Zhang,J.M.,He,J.S.,Zhang,J.,2015b. Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition. Polym. Int. 64,1037-1044.
[16] Chen,Z.Y.,Zhang,J.M.,Xiao,P.,Tian,W.G.,Zhang,J.,2018. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustainable Chem. Eng. 6,4931-4939.
[17] Cheng,F.C.,Wang,H.,Rogers,R.D.,2014. Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sustainable Chem. Eng. 2,2859-2865.
[18] Chu,Y.H.,He,X.Z.,2019. MoDoop:an automated computational approach for COSMO-RS prediction of biopolymer solubilities in ionic liquids. ACS Omega 4,2337-2343.
[19] de Gregorio,G.F.,Prado,R.,Vriamont,C.,Erdocia,X.,Labidi,J.,Hallett,J.P.,Welton,T.,2016. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustainable Chem. Eng. 4,6031-6036.
[20] Demilecamps,A.,Beauger,C.,Hildenbrand,C.,Rigacci,A.,Budtova,T,2015. Cellulose-silica aerogels. Carbohydr Polym 122,293-300.
[21] Du,J.H.,Wen,Y.,Chen,H.X.,Chen,Q.,Xie,H.B.,2018. Synthesis and property study of cellulose methyl carbonate in DMSO/DBU/CO2 system via in situ organocatalysis. Sci. Sin.-Chim 48,512-517.
[22] Duan,Y.Q.,Freyburger,A.,Kunz,W.,Zollfrank,C.,2018. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem. Eng. 6,6965-6973.
[23] Duri,S.,Tran,C.D.,2013. Supramolecular composite materials from cellulose,chitosan,and cyclodextrin:facile preparation and their selective inclusion complex formation with endocrine disruptors. Langmuir 29,5037-5049.
[24] Duri,S.,Tran,C.D.,2014. Enantiomeric selective adsorption of amino acid by polysaccharide composite materials. Langmuir 30,642-650.
[25] Durkin,D.P.,Frank,B.P.,Haverhals,L.M.,Howard Fairbrother,D.,de Long,H.C.,Trulove,P.C.,2019. Engineering lignocellulose fibers with higher thermal stability through natural fiber welding. Macromol. Mater. Eng. 304,1900042.
[26] Durkin,D.P.,Ye,T.,Larson,E.G.,Haverhals,L.M.,Livi,K.J.T.,de Long,H.C.,Trulove,P.C.,Fairbrother,D.H.,Shuai,D.M.,2016. Ligno-cellulose fiber- and welded fiber- supports for palladium-based catalytic hydrogenation:a natural fiber welding application for water treatment. ACS Sustainable Chem. Eng. 4,5511-5522.
[27] Ewulonu,C.M.,Liu,X. R.,Wu,M.,Huang,Y.,2019. Lignin-containing cellulose nanomaterials:a promising new nanomaterial for numerous applications. J. Bioresour. Bioprod. 4,3-10.
[28] Fort,D.A.,Remsing,R.C.,Swatloski,R.P.,Moyna,P.,Moyna,G.,Rogers,R.D.,2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9,63-69.
[29] Granström,M.,née Pääkkö,M.K.,Jin,H.,Kolehmainen,E.,Kilpeläinen,I.,Ikkala,O.,2011. Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2,1789.
[30] Guterman,R.,Molinari,V.,Josef,E.,2019. Ionic liquid lignosulfonate:dispersant and binder for preparation of biocomposite materials. Angew. Chem. Int. Ed. 58,13044-13050.
[31] Hadadi,A.,Whittaker,J.W.,Verrill,D.E.,Hu,X.,Larini,L.,Salas-de la Cruz,D.,2018. A hierarchical model to understand the processing of polysaccharides/protein-based films in ionic liquids. Biomacromolecules 19,3970-3982.
[32] Hamada,Y.,Yoshida,K.,Asai,R.I.,Hayase,S.,Nokami,T.,Izumi,S.,Itoh,T.,2013. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem. 15,1863.
[33] Haq,M.A.,Habu,Y.,Yamamoto,K.,Takada,A.,Kadokawa,J.I.,2019. Ionic liquid induces flexibility and thermoplasticity in cellulose film. Carbohydr. Polym. 223,115058.
[34] Härdelin,L.,Hagström,B.,2015. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. J. Appl. Polym. Sci. 132,41417.
[35] Hart,W.E.S.,Harper,J.B.,Aldous,L.,2015. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 17,214-218.
[36] Haslinger,S.,Wang,Y.F.,Rissanen,M.,Lossa,M.B.,Tanttu,M.,Ilen,E.,Määttänen,M.,Harlin,A.,Hummel,M.,Sixta,H.,2019. Recycling of vat and reactive dyed textile waste to new colored man-made cellulose fibers. Green Chem. 21,5598-5610.
[37] Hauru,L.K.J.,Hummel,M.,Michud,A.,Sixta,H.,2014. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21,4471-4481.
[38] Hauru,L.K.J.,Hummel,M.,Nieminen,K.,Michud,A.,Sixta,H.,2016. Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12,1487-1495.
[39] Huber,T.,Müssig,J.,Curnow,O.,Pang,S.S.,Bickerton,S.,Staiger,M.P.,2012. A critical review of all-cellulose composites. J. Mater. Sci. 47,1171-1186.
[40] Jedvert,K.,Idström,A.,Köhnke,T.,Alkhagen,M.,2020. Cellulosic nonwovens produced via efficient solution blowing technique. J. Appl. Polym. Sci. 137,48339.
[41] Jia,R.N.,Tian,W.G.,Bai,H.T.,Zhang,J.M.,Wang,S.,Zhang,J.,2019a. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10,795.
[42] Jia,R.N.,Tian,W.G.,Bai,H.T.,Zhang,J.M.,Wang,S.,Zhang,J.,2019b. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthcare Mater. 8,1801591.
[43] Jia,S.Y.,Cox,B.J.,Guo,X.W.,Zhang,Z.C.,Ekerdt,J.G.,2010a. Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid,1-H-3-methylimidazolium chloride:an optional strategy for the degradation of lignin. ChemSusChem 3,1078-1084.
[44] Jia,S.Y.,Cox,B.J.,Guo,X.W.,Zhang,Z.C.,Ekerdt,J.G.,2010b. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid. Holzforschung 64,577-580.
[45] Jia,S.Y.,Cox,B.J.,Guo,X.W.,Zhang,Z.C.,Ekerdt,J.G.,2011. Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind. Eng. Chem. Res. 50,849-855.
[46] Kalinoski,R.M.,Shi,J.,2019. Hydrogels derived from lignocellulosic compounds:Evaluation of the compositional,structural,mechanical and antimicrobial properties. Ind. Crop. Prod. 128,323-330.
[47] Keskar,S.S.,Edye,L.A.,Doherty,W.O.S.,Bartley,J.P.,2012. The chemistry of acid catalyzed delignification of sugarcane bagasse in the ionic liquid trihexyl tetradecyl phosphonium chloride. J. Wood Chem. Technol. 32,71-81.
[48] Khanmirzaei,M.H.,Ramesh,S.,Ramesh,K.,2015. Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep. 5,18056.
[49] Kilpeläinen,I.,Xie,H.B.,King,A.,Granstrom,M.,Heikkinen,S.,Argyropoulos,D.S.,2007. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55,9142-9148.
[50] King,A.W.T.,Kilpelainen,I.,Heikkinen,S.,Jarvi,P.,Argyropoulos,D.S.,2009. Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides,as probed by31P NMR. Biomacromolecules 10,458-463.
[51] Kostag,M.,Gericke,M.,Heinze,T.,El Seoud,O.A.,2019. Twenty-five years of cellulose chemistry:innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26,139-184.
[52] Kuzmina,O.,Bhardwaj,J.,Vincent,S.R.,Wanasekara,N.D.,Kalossaka,L.M.,Griffith,J.,Potthast,A.,Rahatekar,S.,Eichhorn,S.J.,Welton,T.,2017. Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. Green Chem. 19,5949-5957.
[53] Lei,L.F.,Lindbråthen,A.,Hillestad,M.,Sandru,M.,Favvas,E.P.,He,X.Z.,2019. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation. Ind. Eng. Chem. Res. 58,13330-13339.
[54] Lei,L.F.,Lindbråthen,A.,Sandru,M.,Gutierrez,M.,Zhang,X.P.,Hillestad,M.,He,X.Z.,2018. Spinning cellulose hollow fibers using 1-ethyl-3-methylimidazolium acetate-dimethylsulfoxide Co-solvent. Polymers 10,972.
[55] Li,J.Y.,Zhang,X.C.,Zhang,J.M.,Mi,Q.Y.,Jia,F.W.,Wu,J.,Yu,J.,Zhang,J.,2019. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength,high-haze and UV-shielding properties. Carbohydr. Polym. 223,115057.
[56] Li,R.J.,Gutierrez,J.,Chung,Y.L.,Frank,C.W.,Billington,S.L.,Sattely,E.S.,2018. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chem. 20,1459-1466.
[57] Liu,H.C.,Li,C.J.,Wang,B.J.,Sui,X.F.,Wang,L.,Yan,X.L.,Xu,H.,Zhang,L.P.,Zhong,Y.,Mao,Z.P.,2018. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose 25,559-571.
[58] Liu,H.C.,Rong,L.D.,Wang,B.J.,Mao,Z.P.,Xie,R.Y.,Xu,H.,Zhang,L.P.,Zhong,Y.,Sui,X.F.,2017a. Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydr. Polym. 170,117-123.
[59] Liu,H.C.,Rong,L.D.,Wang,B.J.,Xie,R.Y.,Sui,X.F.,Xu,H.,Zhang,L.P.,Zhong,Y.,Mao,Z.P,2017b. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym. 176,299-306.
[60] Liu,H.C.,Sui,X.F.,Xu,H.,Zhang,L.P.,Zhong,Y.,Mao,Z.P.,2016. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol. Mater. Eng. 301,725-732.
[61] Liu,Y.R.,Wang,Y.L.,Nie,Y.,Wang,C.L.,Ji,X.Y.,Zhou,L.,Pan,F.J.,Zhang,S.J.,2019. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chem. Eng. 7,20013-20021.
[62] Liu,Z.,Wang,H.S.,Liu,C.,Jiang,Y.J.,Yu,G.,Mu,X.D.,Wang,X.Y.,2012. Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem. Commun. 48,7350.
[63] Lorenzo,M.,Zhu,B.Y.,Srinivasan,G.,2016. Intrinsically flexible electronic materials for smart device applications. Green Chem. 18,3513-3517.
[64] Lu,Y.,Sun,Q.F.,Yang,D.J.,She,X.L.,Yao,X.D.,Zhu,G.S.,Liu,Y.X.,Zhao,H.J.,Li,J.,2012. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. J. Mater. Chem. 22,13548.
[65] Luo,N.,Varaprasad,K.,Reddy,G.V.S.,Rajulu,A.V.,Zhang,J.,2012. Preparation and characterization of cellulose/curcumin composite films. RSC Adv. 2,8483.
[66] Luo,Z.Q.,Wang,A.Q.,Wang,C.Z.,Qin,W.C.,Zhao,N.N.,Song,H.Z.,Gao,J.G.,2014. Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J. Mater. Chem. A 2,7327.
[67] Ma,B.M.,Qin,A.W.,Li,X.,He,C.J.,2013. Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind. Eng. Chem. Res. 52,9417-9421.
[68] Ma,Y.,Hummel,M.,Kontro,I.,Sixta,H.,2018a. High performance man-made cellulosic fibres from recycled newsprint. Green Chem. 20,160-169.
[69] Ma,Y.,Hummel,M.,Määttänen,M.,Särkilahti,A.,Harlin,A.,Sixta,H.,2016. Upcycling of waste paper and cardboard to textiles. Green Chem. 18,858-866.
[70] Ma,Y.B.,Asaadi,S.,Johansson,L.S.,Ahvenainen,P.,Reza,M.,Alekhina,M.,Rautkari,L.,Michud,A.,Hauru,L.,Hummel,M.,Sixta,H.,2015. High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8,4030-4039.
[71] Ma,Y.B.,Stubb,J.,Kontro,I.,Nieminen,K.,Hummel,M.,Sixta,H.,2018b. Filament spinning of unbleached birch kraft pulps:Effect of pulping intensity on the processability and the fiber properties. Carbohydr. Polym. 179,145-151.
[72] Mahmood,H.,Moniruzzaman,M.,Yusup,S.,Akil,H.M.,2016a. Pretreatment of oil palm biomass with ionic liquids:a new approach for fabrication of green composite board. J. Clean. Prod. 126,677-685.
[73] Mahmood,H.,Moniruzzaman,M.,Yusup,S.,Akil,H.M.,2016b. Particulate composites based on ionic liquid-treated oil palm fiber and thermoplastic starch adhesive. Clean Technol. Environ. Policy 18,2217-2226.
[74] Mahmood,H.,Moniruzzaman,M.,Yusup,S.,Muhammad,N.,Iqbal,T.,Akil,H.M.,2017. Ionic liquids pretreatment for fabrication of agro-residue/thermoplastic starch based composites:a comparative study with other pretreatment technologies. J. Clean. Prod. 161,257-266.
[75] Mahmoudian,S.,Wahit,M.U.,Ismail,A.F.,Balakrishnan,H.,Imran,M.,2015. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Mater. Sci. 50,1228-1236.
[76] Man,Z.,Muhammad,N.,Sarwono,A.,Bustam,M.A.,Vignesh Kumar,M.,Rafiq,S.,2011. Preparation of cellulose nanocrystals using an ionic liquid. J. Polym. Environ. 19,726-731.
[77] Mashkour,M.,Tajvidi,M.,Kimura,F.,Yousefi,H.,Kimura,T.,2014. Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. ACS Appl. Mater. Interfaces 6,8165-8172.
[78] Mehta,M.J.,Kumar,A.,2019. Ionic liquid stabilized gelatin-lignin films:a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chem. Eur. J. 25,1269-1274.
[79] Mi,Q.Y.,Ma,S.R.,Yu,J.,He,J.S.,Zhang,J.,2016. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustainable Chem. Eng. 4,656-660.
[80] Michud,A.,Hummel,M.,Sixta,H.,2015. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75,1-9.
[81] Mussana,H.,Yang,X.,Tessima,M.,Han,F.Y.,Iqbal,N.,Liu,L.F.,2018. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind. Crop. Prod. 113,225-233.
[82] Nagatani,M.,Tsurumaki,A.,Takamatsu,K.,Saito,H.,Nakamura,N.,Ohno,H,2019. Preparation of epoxy resins derived from lignin solubilized in tetrabutylphosphonium hydroxide aqueous solutions. Int. J. Biol. Macromol. 132,585-591.
[83] Nawaz,H.,Tian,W.G.,Zhang,J.M.,Jia,R.N.,Chen,Z.Y.,Zhang,J.,2018. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Appl. Mater. Interfaces 10,2114-2121.
[84] Nawaz,H.,Tian,W.G.,Zhang,J.M.,Jia,R.N.,Yang,T.T.,Yu,J.,Zhang,J.,2019. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor. Anal. Chem. 91,3085-3092.
[85] Nawaz,H.,Zhang,J.M.,Tian,W.G.,Jin,K.F.,Jia,R.N.,Yang,T.T.,Zhang,J.,2020. Cellulose-based fluorescent sensor for visual and versatile detection of amines and anions. J. Hazard. Mater. 387,121719.
[86] Nguyen,N.A.,Kim,K.,Bowland,C.C.,Keum,J.K.,Kearney,L.T.,André,N.,Labbé,N.,Naskar,A.K.,2019. A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chem. 21,4354-4367.
[87] Onwukamike,K.N.,Tassaing,T.,Grelier,S.,Grau,E.,Cramail,H.,Meier,M.A.R.,2018. Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization. ACS Sustainable Chem. Eng. 6,1496-1503.
[88] Pei,M.,Peng,X.W.,Shen,Y.Q.,Yang,Y.L.,Guo,Y.L.,Zheng,Q.,Xie,H.B.,Sun,H.,2020. Synthesis of water-soluble,fully biobased cellulose levulinate esters through the reaction of cellulose and alpha-Angelica lactone in a DBU/CO2/DMSO solvent system. Green Chem. 22,707-717.
[89] Peng,S.,Meng,H.C.,Ouyang,Y.,Chang,J.,2014a. Nanoporous magnetic cellulose-chitosan composite microspheres:preparation,characterization,and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53,2106-2113.
[90] Peng,S.,Meng,H.C.,Zhou,L.,Chang,J.,2014b. Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization. J. Nanosci. Nanotechnol. 14,7010-7014.
[91] Pinkert,A.,Goeke,D.F.,Marsh,K.N.,Pang,S.S.,2011. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids. Green Chem. 13,3124.
[92] Plappert,S.F.,Nedelec,J.M.,Rennhofer,H.,Lichtenegger,H.C.,Bernstorff,S.,Liebner,F.W.,2018. Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion:an approach toward anisotropic gels and aerogels. Biomacromolecules 19,4411-4422.
[93] Prado,R.,Brandt,A.,Erdocia,X.,Hallet,J.,Welton,T.,Labidi,J.,2016a. Lignin oxidation and depolymerisation in ionic liquids. Green Chem. 18,834-841.
[94] Prado,R.,Erdocia,X.,de Gregorio,G.F.,Labidi,J.,Welton,T.,2016b. Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chem. Eng. 4,5277-5288.
[95] Pu,Y.Q.,Jiang,N.,Ragauskas,A.J.,2007. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 27,23-33.
[96] Qian,Y.,Qiu,X.Q.,Zhu,S.P.,2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17,320-324.
[97] Ragauskas,A.J.,Beckham,G.T.,Biddy,M.J.,Chandra,R.,Chen,F.,Davis,M.F.,Davison,B.H.,Dixon,R.A.,Gilna,P.,Keller,M.,Langan,P.,Naskar,A.K.,Saddler,J.N.,Tschaplinski,T.J.,Tuskan,G.A.,Wyman,C.E.,2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344,1246843.
[98] Rashid,T.,Kait,C.F.,Regupathi,I.,Murugesan,T.,2016. Dissolution of kraft lignin using Protic Ionic Liquids and characterization. Ind. Crop. Prod. 84,284-293.
[99] Roata,I.C.,Croitoru,C.,Pascu,A.,Stanciu,M.E.,2018. Characterization of physically crosslinked ionic liquid-lignocellulose hydrogels. Bio-Resources,13,6110-6121.
[100] Salanti,A.,Zoia,L.,Orlandi,M.,2016. Chemical modifications of lignin for the preparation of macromers containing cyclic carbonates. Green Chem. 18,4063-4072.
[101] Sanderson,K.,2011. Lignocellulose:a chewy problem. Nature 474,S12-S14.
[102] Scott,J.L.,Unali,G.,Perosa,A.,2011. A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids. Chem. Commun. 47,2970.
[103] Sen,S.,Martin,J.D.,Argyropoulos,D.S.,2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chem. Eng. 1,858-870.
[104] Shen,X.P.,Berton,P.,Shamshina,J.L.,Rogers,R.D.,2016. Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chem. 18,5607-5620.
[105] Shen,X.P.,Xie,Y.J.,Wang,Q.W.,Yi,X.,Shamshina,J.L.,Rogers,R.D.,2019. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose 26,4005-4019.
[106] Singh,N.,Rahatekar,S.S.,Koziol,K.K.K.,Ng,T.S.,Patil,A.J.,Mann,S.,Hollander,A.P.,Kafienah,W.,2013. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 14,1287-1298.
[107] Song,J.,Lu,F.,Cheng,B.W.,Hu,X.Y.,Ma,C.,2014. Melt blowing of ionic liquid-based cellulose solutions. Fibers Polym. 15,291-296.
[108] Sun,N.,Li,W.Y.,Stoner,B.,Jiang,X.Y.,Lu,X.M.,Rogers,R.D.,2011. Composite fibers spun directly from solutions of raw lignocellulosic biomass Dissolved in ionic liquids. Green Chem. 13,1158.
[109] Sun,N.,Rahman,M.,Qin,Y.,Maxim,M.L.,Rodríguez,H.,Rogers,R.D.,2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11,646.
[110] Sun,Y.C.,Liu,X.N.,Wang,T.T.,Xue,B.L.,Sun,R.C.,2019. Green process for extraction of lignin by the microwave-assisted ionic liquid approach:toward biomass biorefinery and lignin characterization. ACS Sustainable Chem. Eng. 7,13062-13072.
[111] Sundberg,J.,Toriz,G.,Gatenholm,P.,2015. Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose 22,1943-1953.
[112] Tan,S.S.Y.,MacFarlane,D.R.,Upfal,J.,Edye,L.A.,Doherty,W.O.S.,Patti,A.F.,Pringle,J.M.,Scott,J.L.,2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11,339.
[113] Thiemann,S.,Sachnov,S.J.,Pettersson,F.,Bollström,R.,Österbacka,R.,Wasserscheid,P.,Zaumseil,J.,2014. Cellulose-based ionogels for paper electronics. Adv. Funct. Mater. 24,625-634.
[114] Tian,W.G.,Zhang,J.M.,Yu,J.,Wu,J.,Nawaz,H.,Zhang,J.,He,J.S.,Wang,F.S.,2016. Cellulose-based solid fluorescent materials. Adv. Opt. Mater. 4,2044-2050.
[115] Tian,W.G.,Zhang,J.M.,Yu,J.,Wu,J.,Zhang,J.,He,J.S.,Wang,F.S.,2018. Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv. Funct. Mater. 28,1703548.
[116] Tran,C.D.,Prosenc,F.,Franko,M.,Benzi,G.,2016. One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin:characterization and antimicrobial activity. ACS Appl. Mater. Interfaces 8,34791-34801.
[117] Tsioptsias,C.,Stefopoulos,A.,Kokkinomalis,I.,Papadopoulou,L.,Panayiotou,C,2008. Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chemistry 10,965-971.
[118] Utomo,N.W.,Saifuddin,I.,Nazari,B.,Jain,P.,Colby,R.H.,2020. Chain dynamics and glass transition of dry native cellulose solutions in ionic liquids. Soft Matter 16,200-207.
[119] Villar-Chavero,M.M.,Domínguez,J.C.,Alonso,M.V.,Oliet,M.,Rodriguez,F.,2019. Tuning the rheological properties of cellulosic ionogels reinforced with chitosan:The role of the deacetylation degree. Carbohydr. Polym. 207,775-781.
[120] Vincent,S.,Prado,R.,Kuzmina,O.,Potter,K.,Bhardwaj,J.,Wanasekara,N.D.,Harniman,R.L.,Koutsomitopoulou,A.,Eichhorn,S.J.,Welton,T.,Rahatekar,S.S.,2018. Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustainable Chem. Eng. 6,5903-5910.
[121] Vo,H.T.,Kim,Y.J.,Jeon,E.H.,Kim,C.S.,Kim,H.S.,Lee,H.,2012. Ionic-liquid-derived,water-soluble ionic cellulose. Chem. Eur. J. 18,9019-9023.
[122] Wan,J.Q.,Zhang,J.M.,Yu,J.,Zhang,J.,2017. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer Lithium-Ion batteries. ACS Appl. Mater. Interfaces 9,24591-24599.
[123] Wanasekara,N.D.,Michud,A.,Zhu,C.C.,Rahatekar,S.,Sixta,H.,Eichhorn,S.J.,2016. Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99,222-230.
[124] Wang,J.,Boy,R.,Nguyen,N.A.,Keum,J.K.,Cullen,D.A.,Chen,J.H.,Soliman,M.,Littrell,K.C.,Harper,D.,Tetard,L.,Rials,T.G.,Naskar,A.K.,Labbé,N.,2017. Controlled assembly of lignocellulosic biomass components and properties of reformed materials. ACS Sustainable Chem. Eng. 5,8044-8052.
[125] Wang,S.,Shuai,L.,Saha,B.,Vlachos,D.G.,Epps,T.H.III,2018. From tree to tape:direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 4,701-708.
[126] Wang,Z.H.,Tammela,P.,Strømme,M.,Nyholm,L.,2017. Cellulose-based supercapacitors:material and performance considerations. Adv. Energy Mater. 7,1700130.
[127] Wu,J.,Bai,J.,Xue,Z.G.,Liao,Y.G.,Zhou,X.P.,Xie,X.L.,2015. Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose 22,89-99.
[128] Xiao,P.,Zhang,J.M.,Feng,Y.,Wu,J.,He,J.S.,Zhang,J.,2014. Synthesis,characterization and properties of novel cellulose derivatives containing phosphorus:cellulose diphenyl phosphate and its mixed esters. Cellulose 21,2369-2378.
[129] Xu,A.R.,Guo,X.,Zhang,Y.B.,Li,Z.Y.,Wang,J.J.,2017. Efficient and sustainable solvents for lignin dissolution:aqueous choline carboxylate solutions. Green Chem. 19,4067-4073.
[130] Yang,Y.L.,Song,L.C.,Peng,C.,Liu,E.H.,Xie,H.B.,2015. Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem. 17,2758-2763.
[131] Yang,Y.L.,Xie,H.B.,Liu,E.H.,2014. Acylation of cellulose in reversible ionic liquids. Green Chem. 16,3018-3023.
[132] Yin,C.C.,Chen,W.W.,Zhang,J.M.,Zhang,M.,Zhang,J.,2019b. A facile and efficient method to fabricate high-resolution immobilized cellulose-based chiral stationary phases via thiol-ene click chemistry. Sep. Purif. Technol. 210,175-181.
[133] Yin,C.C.,Zhang,J.M.,Chang,L.M.,Zhang,M.,Yang,T.T.,Zhang,X.C.,Zhang,J,2019a. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases. Anal. Chimica Acta 1073,90-98.[
[134] Yuan,B.,Zhang,J.M.,Mi,Q.Y.,Yu,J.,Song,R.,Zhang,J.,2017. Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ Sol-gel process. ACS Sustainable Chem. Eng. 5,11117-11123.
[135] Yuan,B.,Zhang,J.M.,Yu,J.,Song,R.,Mi,Q.Y.,He,J.S.,Zhang,J.,2016. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci. China Chem. 59,1335-1341.
[136] Zakzeski,J.,Bruijnincx,P.C.A.,Jongerius,A.L.,Weckhuysen,B.M.,2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110,3552-3599.
[137] Zhang,J.M.,Chen,W.W.,Feng,Y.,Wu,J.,Yu,J.,He,J.S.,Zhang,J.,2015. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 64,963-970.
[138] Zhang,J.M.,Luo,N.,Wan,J.Q.,Xia,G.M.,Yu,J.,He,J.S.,Zhang,J.,2017b. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chem. Eng. 5,5127-5133.
[139] Zhang,J.M.,Luo,N.,Zhang,X.Y.,Xu,L.L.,Wu,J.,Yu,J.,He,J.S.,Zhang,J.,2016. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustainable Chem. Eng. 4,4417-4423.
[140] Zhang,J.M.,Wu,J.,Yu,J.,Zhang,X.Y.,He,J.S.,Zhang,J.,2017a. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials:state of the art and future trends. Mater. Chem. Front. 1,1273-1290.
[141] Zhang,J.P.,Kitayama,H.,Gotoh,Y.,Potthast,A.,Rosenau,T.,2019a. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 226,115258.
[142] Zhang,J.P.,Yamagishi,N.,Gotoh,Y.,Potthast,A.,Rosenau,T.,2020. High performance cellulose fibers regenerated from 1-butyl-3- methylimidazolium chloride solution:Effects of viscosity and molecular weight. J. Appl. Polym. Sci. 137,48681.
[143] Zhang,J.P.,Yamagishi,N.,Tominaga,K.,Gotoh,Y.,2017c. High-strength regenerated cellulose fibers spun from 1-butyl-3-methylimidazolium chloride solutions. J. Appl. Polym. Sci. 134,45551.
[144] Zhang,L.,Zhao,D.W.,Feng,M.,He,B.,Chen,X.Y.,Wei,L.G.,Zhai,S.R.,An,Q.D.,Sun,J.,2019b. Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustainable Chem. Eng. 7,18593-18602.
[145] Zhang,X.,Liu,W.F.,Yang,D.J.,Qiu,X.Q.,2019c. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29,1806912.
[146] Zhang,Z.R.,Song,J.L.,Han,B.X.,2017d. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117,6834-6880.
[147] Zhao,D.W.,Chen,C.J.,Zhang,Q.,Chen,W.S.,Liu,S.X.,Wang,Q.W.,Liu,Y.X.,Li,J.,Yu,H.P.,2017. High performance,flexible,solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7,1700739.
[148] Zhao,D.W.,Zhu,Y.,Cheng,W.K.,Xu,G.W.,Wang,Q.W.,Liu,S.X.,Li,J.,Chen,C.J.,Yu,H.P.,Hu,L.B.,2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2,390-403.
[149] Zhao,L.,Shi,S.,Liu,M.,Zhu,G.Z.,Wang,M.,Du,W.Q.,Gao,J.,Xu,J.,2018. Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chem. 20,1270-1279.
[150] Zheng,Y.Y.,Miao,J.J.,Maeda,N.,Frey,D.,Linhardt,R.J.,Simmons,T.J.,2014. Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J. Mater. Chem. A 2,15029-15034.
[151] Zhou,L.,Wang,Q.,Wen,J.C.,Chen,X.,Shao,Z.Z.,2013. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54,5035-5042.
[152] Zhu,C.C.,Koutsomitopoulou,A.F.,Eichhorn,S.J.,van Duijneveldt,J.S.,Richardson,R.M.,Nigmatullin,R.,Potter,K.D.,2018a. High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as Co-solvent with ionic liquid. Macromol. Mater. Eng. 303,1800029.
[153] Zhu,C.C.,Richardson,R.M.,Potter,K.D.,Koutsomitopoulou,A.F.,van Duijneveldt,J.S.,Vincent,S.R.,Wanasekara,N.D.,Eichhorn,S.J.,Rahatekar,S.S.,2016. High Modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustainable Chem. Eng. 4,4545-4553.
[154] Zhu,H.L.,Fang,Z.Q.,Wang,Z.,Dai,J.Q.,Yao,Y.G.,Shen,F.,Preston,C.,Wu,W.X.,Peng,Jang,N.,Yu,Q.K.,Yu,Z.F.,Hu,L.B.,2016. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10,1369-1377.
[155] Zhu,X.Y.,Peng,C.,Chen,H.X.,Chen,Q.,Zhao,Z.K.,Zheng,Q.,Xie,H.B.,2018b. Opportunities of ionic liquids for lignin utilization from biorefinery. ChemistrySelect 3,7945-7962.
[156] Zhu,Y.T.,Li,Z.J.,Chen,J.Z.,2019. Applications of lignin-derived catalysts for green synthesis. Green Energy Environ. 4,210-244.