Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Ahmed Madni, Rozina Kousar, Naveera Naeem, Fazli Wahid. Recent Advancements in Applications of Chitosan-based Biomaterials for Skin Tissue Engineering[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25. doi: 10.1016/j.jobab.2021.01.002
Citation: Ahmed Madni, Rozina Kousar, Naveera Naeem, Fazli Wahid. Recent Advancements in Applications of Chitosan-based Biomaterials for Skin Tissue Engineering[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25. doi: 10.1016/j.jobab.2021.01.002

Recent Advancements in Applications of Chitosan-based Biomaterials for Skin Tissue Engineering

doi: 10.1016/j.jobab.2021.01.002
More Information
  • The use of polymer based composites in the treatment of skin tissue damages, has got huge attention in clinical demand, which enforced the scientists to improve the methods of biopolymer designing in order to obtain highly efficient system for complete restoration of damaged tissue. In last few decades, chitosan-based biomaterials have major applications in skin tissue engineering due to its biocompatible, hemostatic, antimicrobial and biodegradable capabilities. This article overviewed the promising biological properties of chitosan and further discussed the various preparation methods involved in chitosan-based biomaterials. In addition, this review also gave a comprehensive discussion of different forms of chitosan-based biomaterials including membrane, sponge, nanofiber and hydrogel that were extensively employed in skin tissue engineering. This review will help to form a base for the advanced applications of chitosan-based biomaterials in treatment of skin tissue damages.

     

  • loading
  • Abdel-Rahman, R. M. , Hrdina, R. , Abdel-Mohsen, A. M. , Fouda, M. M. G. , Soliman, A. Y. , Mohamed, F. K. , Mohsin, K. , Pinto, T. D. , 2015. Chitin and chitosan from Brazilian Atlantic Coast: isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107-120. doi: 10.1016/j.ijbiomac.2015.06.027
    Abid, S. , Hussain, T. , Nazir, A. , Zahir, A. , Ramakrishna, S. , Hameed, M. , Khenoussi, N. , 2019. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol. 135, 1222-1236. doi: 10.1016/j.ijbiomac.2019.06.022
    Adeli, H. , Khorasani, M. T. , Parvazinia, M. , 2019. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 122, 238-254. doi: 10.1016/j.ijbiomac.2018.10.115
    Ahmadi, F. , Oveisi, Z. , Samani, S. M. , Amoozgar, Z. , 2015. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1-16. http://europepmc.org/abstract/MED/26430453
    Ahmed, T. A. , Aljaeid, B. M. , 2016. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 10, 483-507. http://www.tandfonline.com/servlet/linkout?suffix=CIT0116&dbid=8&doi=10.1080%2F17425247.2016.1178232&key=26869768
    Annabi, N. , Mithieux, S. M. , Weiss, A. S. , Dehghani, F. , 2009. The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30, 1-7. doi: 10.1016/j.biomaterials.2008.09.031
    Archana, D. , Dutta, J. , Dutta, P. K. , 2013. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 57, 193-203. doi: 10.1016/j.ijbiomac.2013.03.002
    Azad, A. K. , Sermsintham, N. , Chandrkrachang, S. , Stevens, W. F. , 2004. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. Part B: Appl. Biomater. 69B, 216-222. doi: 10.1002/jbm.b.30000
    Bagher, Z. , Ehterami, A. , Safdel, M. H. , Khastar, H. , Semiari, H. , Asefnejad, A. , Davachi, S. M. , Mirzaii, M. , Salehi, M. , 2020. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug. Deliv. Sci. Technol. 55, 101379. doi: 10.1016/j.jddst.2019.101379
    Balan, V. , Verestiuc, L. , 2014. Strategies to improve chitosan hemocompatibility: a review. Eur. Polym. J. 53, 171-188. doi: 10.1016/j.eurpolymj.2014.01.033
    Basseri, H. , Bakhtiyari, R. , Hashemi, S. J. , Baniardelani, M. , Shahraki, H. , Hosainpour, L. , 2019. Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 56, 1208-1214. doi: 10.1093/jme/tjz082
    Behera, S. S. , Das, U. , Kumar, A. , Bissoyi, A. , Singh, A. K. , 2017. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. Int. J. Biol. Macromol. 98, 329-340. doi: 10.1016/j.ijbiomac.2017.02.017
    Bellini, M. Z. , Caliari-Oliveira, C. , Mizukami, A. , Swiech, K. , Covas, D. T. , Donadi, E. A. , Oliva-Neto, P. , Moraes, A. M. , 2015. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J. Biomater. Appl. 29, 1155-1166. doi: 10.1177/0885328214553959
    Berger, L. R. R. , Stamford, N. P. , Willadino, L. G. , Laranjeira, D. , de Lima, M. A. B. , Malheiros, S. M. M. , de Oliveira, W. J. , Stamford, T. C. M. , 2016. Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biol. Control. 92, 45-54. doi: 10.1016/j.biocontrol.2015.09.006
    Binder, J. B. , Raines, R. T. , 2009. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979-1985. doi: 10.1021/ja808537j
    Blakeney, B. A. , Tambralli, A. , Anderson, J. M. , Andukuri, A. , Lim, D. J. , Dean, D. R. , Jun, H. W. , 2011. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomater. 32, 1583-1590. doi: 10.1016/j.biomaterials.2010.10.056
    Bolat, Y. , Bilgin, Ş. , Günlü, A. , Izci, L. , Koca, S. B. , Çetinkaya, S. , Koca, H. U. , 2010. Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell. Pak. Vet. J. 30, 227-231. http://www.cabdirect.org/abstracts/20103310590.html
    Boyce, S. T. , Lalley, A. L. , 2018. Tissue engineering of skin and regenerative medicine for wound care. Burn. Trauma 6, 4.
    Campos, M. G. N. , Mei, L. H. I. , Santos, A. R. , 2015. Sorbitol-plasticized and neutralized chitosan membranes as skin substitutes. Mat. Res. 18, 781-790. doi: 10.1590/1516-1439.025015
    Cardoso, A. M. , de Oliveira, E. G. , Coradini, K. , Bruinsmann, F. A. , Aguirre, T. , Lorenzoni, R. , Barcelos, R. C. S. , Roversi, K. , Rossato, D. R. , Pohlmann, A. R. , Guterres, S. S. , Burger, M. E. , Beck, R. C. R. , 2019. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng. : C 96, 205-217. doi: 10.1016/j.msec.2018.11.013
    Chang, S. H. , Lin, H. T. V. , Wu, G. J. , Tsai, G. J. , 2015. pH effects on solubility, Zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 134, 74-81. doi: 10.1016/j.carbpol.2015.07.072
    Chang, S. H. , Wu, C. H. , Tsai, G. J. , 2018. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym. 181, 1026-1032. doi: 10.1016/j.carbpol.2017.11.047
    Chen, C. L. , Wang, L. C. , Zhu, B. , Zhou, Z. Q. , El-Hout, S. I. , Yang, J. , Zhang, J. , 2021. 2, 5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism. J. Energy Chem. 54, 528-554. doi: 10.1016/j.jechem.2020.05.068
    Chen, H. L. , Huang, J. , Yu, J. H. , Liu, S. Y. , Gu, P. , 2011. Electrospun chitosan-graft-poly (ɛ -caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48, 13-19. doi: 10.1016/j.ijbiomac.2010.09.019
    Chen, Y. , Qiu, H. Y. , Dong, M. H. , Cheng, B. , Jin, Y. G. , Tong, Z. R. , Li, P. W. , Li, S. D. , Yang, Z. M. , 2019. Preparation of hydroxylated lecithin complexed iodine/carboxymethyl chitosan/sodium alginate composite membrane by microwave drying and its applications in infected burn wound treatment. Carbohydr. Polym. 206, 435-445. doi: 10.1016/j.carbpol.2018.10.068
    Cheung, R. , Ng, T. , Wong, J. , Chan, W. , 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13, 5156-5186. doi: 10.3390/md13085156
    Chien, P. J. , Sheu, F. , Lin, H. R. , 2007. Quality assessment of low molecular weight chitosan coating on sliced red pitayas. J. Food Eng. 79, 736-740. doi: 10.1016/j.jfoodeng.2006.02.047
    Chung, M. J. , Park, J. K. , Park, Y. I. , 2012. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int. Immunopharmacol. 12, 453-459. doi: 10.1016/j.intimp.2011.12.027
    Cook, J. P. , Goodall, G. W. , Khutoryanskaya, O. V. , Khutoryanskiy, V. V. , 2012. Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol. Rapid Commun. 33, 332-336. doi: 10.1002/marc.201100742
    Dash, M. , Chiellini, F. , Ottenbrite, R. M. , Chiellini, E, 2011. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981-1014 doi: 10.1016/j.progpolymsci.2011.02.001
    de Isla, N. , Huseltein, C. , Jessel, N. , Pinzano, A. , Decot, V. , Magdalou, J. , Bensoussan, D. , Stoltz, J. F. , 2010. Introduction to tissue engineering and application for cartilage engineering. Biomed. Mater. Eng. 20, 127-133. http://www.ncbi.nlm.nih.gov/pubmed/20930320
    de Lima, J. M. , Sarmento, R. R. , de Souza, J. R. , Brayner, F. A. , Feitosa, A. P. , Padilha, R. , Alves, L. C. , Porto, I. J. , Batista, R. F. , de Oliveira, J. E. , de Medeiros, E. S. , Bonan, P. R. , Castellano, L. R. , 2015. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed. Res. Int. 2015, 247965. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=109273364&site=ehost-live
    de Paz, L. E. C. , Resin, A. , Howard, K. A. , Sutherland, D. S. , Wejse, P. L. , 2011. Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl. Environ. Microbiol. 77, 3892-3895. doi: 10.1128/AEM.02941-10
    de Queiroz Antonino, R. , Lia Fook, B. , de Oliveira Lima, V. , de Farias Rached, R. , Lima, E. , da Silva Lima, R. , Peniche Covas, C. , Lia Fook, M. , 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Drugs 15, 141. doi: 10.3390/md15050141
    Deepa, R. , Paul, W. , Anilkumar, T. V. , Sharma, C. P. , 2013. Differential healing of full thickness rabbit skin wound by fibroblast loaded chitosan sponge. J. Biomater. Tissue Eng. 3, 261-272. doi: 10.1166/jbt.2013.1094
    Dhandayuthapani, B. , Krishnan, U. M. , Sethuraman, S. , 2010. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 94, 264-272. http://www.researchgate.net/publication/44650188_Fabrication_and_characterization_of_chitosan-gelatin_blend_nanofibers_for_skin_tissue_engineering_J_Biomed_Mater_Res_94B264-272
    Dhillon, G. S. , Kaur, S. , Brar, S. K. , Verma, M. , 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33, 379-403. doi: 10.3109/07388551.2012.717217
    Di Mario, F. , Rapanà, P. , Tomati, U. , Galli, E. , 2008. Chitin and chitosan from Basidiomycetes. Int. J. Biol. Macromol. 43, 8-12. doi: 10.1016/j.ijbiomac.2007.10.005
    Domalik-Pyzik, P. , Chłopek, J. , Pielichowska, K. , 2019. Chitosan-based hydrogels: preparation, properties, and applications. Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing, 1665-1693.
    Dong, P. , Yuan, L. W. , Hao, W. C. , Xia, Y. Y. , Da, G. Z. , Wang, T. M. , 2009. Biocompatibility of chitosan/heparin multilayer coating on NiTi alloy. Mater. Sci. Forum 610/611/612/613, 1179-1182. http://www.scientific.net/MSF.610-613.1179
    Du, Y. J. , Zhao, Y. Q. , Dai, S. C. , Yang, B. , 2009. Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol. 10, 103-107. doi: 10.1016/j.ifset.2008.07.004
    Duan, B. , Dong, C. H. , Yuan, X. Y. , Yao, K. D. , 2004. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 15, 797-811. doi: 10.1163/156856204774196171
    Duan, B. , Yuan, X. Y. , Zhu, Y. , Zhang, Y. Y. , Li, X. L. , Zhang, Y. , de Yao, K. , 2006. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur. Polym. J. 42, 2013-2022. doi: 10.1016/j.eurpolymj.2006.04.021
    Dutta, S. , Kim, J. , Ide, Y. , Ho Kim, J. , Hossain, M. S. A. , Bando, Y. , Yamauchi, Y. , Wu, K. C. W. , 2017. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 4, 522-545. doi: 10.1039/C6MH00500D
    Ehterami, A. , Salehi, M. , Farzamfar, S. , Samadian, H. , Vaez, A. , Ghorbani, S. , Ai, J. , Sahrapeyma, H. , 2019. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J. Drug Deliv. Sci. Technol. 51, 204-213. doi: 10.1016/j.jddst.2019.02.032
    Eldin, M. M. , Soliman, E. A. , Hashem, A. I. , Tamer, T. M. , 2008. Antibacterial activity of chitosan chemically modified with new technique. Trends Biomater. Artif. Organs 22, 125-137. http://www.researchgate.net/publication/228739488_Antibacterial_activity_of_chitosan_chemically_modified_with_new_technique
    Fernandes, J. C. , Spindola, H. , de Sousa, V. , Santos-Silva, A. , Pintado, M. E. , Malcata, F. X. , Carvalho, J. E. , 2010. Anti-inflammatory activity of chitooligosaccharides in vivo. Mar. Drugs 8, 1763-1768. doi: 10.3390/md8061763
    Fu, J. , Yang, F. C. , Guo, Z. G. , 2018. The chitosan hydrogels: from structure to function. New J. Chem. 42, 17162-17180. doi: 10.1039/C8NJ03482F
    Galvis-Sánchez, A. C. , Sousa, A. M. M. , Hilliou, L. , GonÇalves, M. P. , Souza, H. K. S. , 2016. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chem. 18, 1571-1580. doi: 10.1039/C5GC02231B
    Garg, T. , Chanana, A. , Joshi, R. , 2012a. Preparation of chitosan scaffolds for tissue engineering using freeze drying technology. IOSR J. Pharm. 2, 72-73. http://www.researchgate.net/publication/265427076_Preparation_of_Chitosan_Scaffolds_for_Tissue_Engineering_using_Freeze_drying_Technology
    Garg, T. , Singh, O. , Arora, S. , Murthy, R. S. R. , 2012b. Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug 29, 1-63. doi: 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10
    Ghosal, K. , Manakhov, A. , Zajíčková, L. , Thomas, S. , 2017. Structural and surface compatibility study of modified electrospun poly(ε -caprolactone) (PCL) composites for skin tissue engineering. AAPS Pharmscitech 18, 72-81. doi: 10.1208/s12249-016-0500-8
    Goy, R. C. , Morais, S. T. B. , Assis, O. B. G. , 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira De Farmacognosia 26, 122-127. doi: 10.1016/j.bjp.2015.09.010
    Hajji, S. , Younes, I. , Rinaudo, M. , Jellouli, K. , Nasri, M. , 2015. Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Appl. Biochem. Biotechnol. 177, 18-35. doi: 10.1007/s12010-015-1724-x
    Halim, A. , Periayah, M. , Saad, A. M. , 2016. Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 10, 39. doi: 10.4103/0973-7847.176545
    Han, F. , Dong, Y. , Su, Z. , Yin, R. , Song, A. H. , Li, S. M. , 2014. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. Int. J. Pharm. 476, 124-133. doi: 10.1016/j.ijpharm.2014.09.036
    Hiep, N. T. , Khon, H. C. , Niem, V. V. T. , Toi, V. V. , Ngoc Quyen, T. , Hai, N. D. , Ngoc Tuan Anh, M. , 2016. Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications. Int. J. Polym. Sci. 2016, 1-11. http://www.researchgate.net/publication/309022767_Microwave-Assisted_Synthesis_of_ChitosanPolyvinyl_Alcohol_Silver_Nanoparticles_Gel_for_Wound_Dressing_Applications
    Hohman, M. M. , Shin, M. , Rutledge, G. , Brenner, M. P. , 2001. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13, 2221-2236. doi: 10.1063/1.1384013
    Hu, K. J. , Hu, J. L. , Ho, K. P. , Yeung, K. W. , 2004. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr. Polym. 58, 45-52. doi: 10.1016/j.carbpol.2004.06.015
    Ikeda, T. , Ikeda, K. , Yamamoto, K. , Ishizaki, H. , Yoshizawa, Y. , Yanagiguchi, K. , Yamada, S. , Hayashi, Y. , 2014. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res. Int. 2014, 1-8.
    Ing, L. Y. , Zin, N. M. , Sarwar, A. , Katas, H. , 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater. 2012, 1-9.
    Islam, M. M. , Masum, S. M. , Mahbub, K. R. , 2011. In vitro antibacterial activity of shrimp chitosan against Salmonela paratyphi and Staphylococcus aureus. J. Bangla. Chem. Soc. 24, 185-190. http://www.researchgate.net/publication/235932532_In_vitro_antibacterial_activity_shrimp_chitosan_against_Salmonella_Paratyphi_Staphylococcus_Aureus/download
    Jayakumar, R. , Prabaharan, M. , Sudheesh Kumar, P. T. , Nair, S. V. , Tamura, H. , 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29, 322-337. doi: 10.1016/j.biotechadv.2011.01.005
    Ji, C. D. , Annabi, N. , Khademhosseini, A. , Dehghani, F. , 2011. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 7, 1653-1664. doi: 10.1016/j.actbio.2010.11.043
    Kabashima, K. , Honda, T. , Ginhoux, F. , Egawa, G. , 2019. The immunological anatomy of the skin. Nat. Rev. Immunol. 19, 19-30. doi: 10.1038/s41577-018-0084-5
    Kaya, M. , Akata, I. , Baran, T. , Menteş, A. , 2015a. Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys. 10, 162-168. doi: 10.1007/s11483-014-9378-8
    Kaya, M. , Asan-Ozusaglam, M. , Erdogan, S, 2016. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. J. Biosci. Bioeng. 121, 678-684. doi: 10.1016/j.jbiosc.2015.11.005
    Kaya, M. , Baran, T. , Asan-Ozusaglam, M. , Cakmak, Y. S. , Tozak, K. O. , Mol, A. , Mentes, A. , Sezen, G, 2015b. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 20, 168-179. doi: 10.1007/s12257-014-0391-z
    Kaya, M. , Baran, T. , Erdoğan, S. , Menteş, A. , Aşan Özüsağlam, M. , Çakmak, Y. S, 2014d. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. : C 45, 72-81. doi: 10.1016/j.msec.2014.09.004
    Kaya, M. , Baran, T. , Saman, I. , Asan Ozusaglam, M. , Cakmak, Y. S. , Menteş, A. , 2014b. Physicochemical characterization of chitin and chitosan obtained from resting eggs of Ceriodaphnia quadrangula (Branchiopoda: Cladocera: Daphniidae). J Crustacean Biol 34, 283-288. doi: 10.1163/1937240X-00002221
    Kaya, M. , Cakmak, Y. S. , Baran, T. , Asan-Ozusaglam, M. , Mentes, A. , Tozak, K. O, 2014a. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioprocess Eng. 19, 58-69. doi: 10.1007/s12257-013-0488-9
    Kaya, M. , Seyyar, O. , Baran, T. , Erdoğan, S. , Kar, M, 2014c. A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: with new surface morphology. Int. J. Biol. Macromol. 65, 553-558. doi: 10.1016/j.ijbiomac.2014.02.010
    Khalid, A., Naeem, N., Khan, T., Wahid, F., 2020. Polysaccharide composites as a wound-healing sponge. In: Al-Ahmed, A., Inamuddin (Eds. ), Advanced Applications of Polysaccharides and their Composites. Materials Research Forum LLC, 1-26.
    Kim, S. , 2018. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. 2018, 1-13. http://www.researchgate.net/publication/326516886_Competitive_Biological_Activities_of_Chitosan_and_Its_Derivatives_Antimicrobial_Antioxidant_Anticancer_and_Anti-Inflammatory_Activities
    Kleekayai, T. , Suntornsuk, W. , 2011. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 27, 1145-1154. doi: 10.1007/s11274-010-0561-x
    Kong, M. , Chen, X. G. , Xing, K. , Park, H. J. , 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012
    Koosha, M. , Raoufi, M. , Moravvej, H. , 2019. One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf B Biointerfaces 179, 270-279. doi: 10.1016/j.colsurfb.2019.03.054
    Kronenthal, R. , 2013. Polymers in medicine and surgery. Berlin: Springer Science & Business Media.
    Liao, Y. T. , Matsagar, B. M. , Wu, K. C. W. , 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 6, 13628-13643. doi: 10.1021/acssuschemeng.8b03683
    Limam, Z. , Selmi, S. , Sadok, S. , El Abed, A. , 2011. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10, 640-647. http://www.researchgate.net/publication/268370948_Extraction_and_characterization_of_chitin_and_chitosan_from_crustacean_by-products_Biological_and_physicochemical_properties
    Liu, H. , Wang, C. , Li, C. , Qin, Y. , Wang, Z. , Yang, F. , Li, Z. , Wang, J. , 2018. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 8, 7533-7549. doi: 10.1039/C7RA13510F
    Liu, X. C. , You, L. J. , Tarafder, S. , Zou, L. , Fang, Z. X. , Chen, J. D. , Lee, C. H. , Zhang, Q. Q. , 2019. Curcumin-releasing chitosan/aloe membrane for skin regeneration. Chem. Eng. J. 359, 1111-1119. doi: 10.1016/j.cej.2018.11.073
    Ma, P. X. , 2008. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184-198. doi: 10.1016/j.addr.2007.08.041
    Ma, Y. , Xin, L. , Tan, H. P. , Fan, M. , Li, J. L. , Jia, Y. , Ling, Z. H. , Chen, Y. , Hu, X. H. , 2017. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. : C 81, 522-531. doi: 10.1016/j.msec.2017.08.052
    Ma, Z. X. , Kim, D. , Adesogan, A. T. , Ko, S. , Galvao, K. , Jeong, K. C. , 2016. Chitosan microparticles exert broad-spectrum antimicrobial activity against antibiotic-resistant micro-organisms without increasing resistance. ACS Appl. Mater. Interfaces 8, 10700-10709. doi: 10.1021/acsami.6b00894
    Madni, A. , Khan, R. , Ikram, M. , Naz, S. S. , Khan, T. , Wahid, F. , 2019. Fabrication and characterization of chitosan-vitamin C-lactic acid composite membrane for potential skin tissue engineering. Int. J. Polym. Sci. 2019, 1-8. http://www.researchgate.net/publication/330683254_Fabrication_and_Characterization_of_Chitosan-Vitamin_C-Lactic_Acid_Composite_Membrane_for_Potential_Skin_Tissue_Engineering
    Masood, N. , Ahmed, R. , Tariq, M. , Ahmed, Z. , Masoud, M. S. , Ali, I. , Asghar, R. , Andleeb, A. , Hasan, A. , 2019. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 559, 23-36. doi: 10.1016/j.ijpharm.2019.01.019
    Morgado, P. I. , Miguel, S. P. , Correia, I. J. , Aguiar-Ricardo, A. , 2017. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr. Polym. 159, 136-145. doi: 10.1016/j.carbpol.2016.12.029
    Naveed, M. , Phil, L. , Sohail, M. , Hasnat, M. , Baig, M. M. F. A. , Ihsan, A. U. , Shumzaid, M. , Kakar, M. U. , Khan, T. M. , Akabar, M. D. , Hussain, M. I. , Zhou, Q. G. , 2019. Chitosan oligosaccharide (COS): an overview. Int. J. Biol. Macromol. 129, 827-843. doi: 10.1016/j.ijbiomac.2019.01.192
    Nguyen, V. C. , Nguyen, V. B. , Hsieh, M. F. , 2013. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int. J. Polym. Sci. 2013, 1-7.
    No, H. K. , Kim, S. H. , Lee, S. H. , Park, N. Y. , Prinyawiwatkul, W. , 2006. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr. Polym. 65, 174-178. doi: 10.1016/j.carbpol.2005.12.036
    No, H. K. , Young Park, N. , Ho Lee, S. , Meyers, S. P. , 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65-72. doi: 10.1016/S0168-1605(01)00717-6
    Oduor-Odeto, P. M. , Struszezyk, M. H. , Peter, M. G. , 2007. Characterisation of chitosan from blowfly larvae and some crustacean species from Kenyan Marin waters prepared under different conditions. West Ind. Oc. J. Mar. Sci. 4, 99-108. http://www.oalib.com/paper/1352089
    Oliveira, M. I. , Santos, S. G. , Oliveira, M. J. , Torres, A. L. , Barbosa, M. A. , 2012. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur. Cell Mater. 24, 136-153. doi: 10.22203/eCM.v024a10
    Oryan, A. , Sahvieh, S. , 2017. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003-1011. doi: 10.1016/j.ijbiomac.2017.06.124
    Pandey, A. R. , Singh, U. S. , Momin, M. , Bhavsar, C. , 2017. Chitosan: Application in tissue engineering and skin grafting. J. Polym. Res. 24, 125. doi: 10.1007/s10965-017-1286-4
    Park, C. H. , Lee, W. I. , 2012. Compression molding in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs). Amsterdam: Elsevier, 47-94. http://www.sciencedirect.com/science/article/pii/B9780857090676500031?np=y
    Patil, P. S. , Fathollahipour, S. , Inmann, A. , Pant, A. , Amini, R. , Shriver, L. P. , Leipzig, N. D. , 2019. Fluorinated methacrylamide chitosan hydrogel dressings improve regenerated wound tissue quality in diabetic wound healing. Adv. Wound Care (New Rochelle) 8, 374-385. doi: 10.1089/wound.2018.0887
    Pereira, R. F. , Bártolo, P. J. , 2016. Traditional therapies for skin wound healing. Adv. Wound Care (New Rochelle) 5, 208-229. doi: 10.1089/wound.2013.0506
    Pezeshki-Modaress, M. , Rajabi-Zeleti, S. , Zandi, M. , Mirzadeh, H. , Sodeifi, N. , Nekookar, A. , Aghdami, N, 2014. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: In vitro and in vivo study. J. Biomed. Mater. Res. Part A 102, 3908-3917. doi: 10.1002/jbm.a.35054
    Pini, R. , Storti, G. , Mazzotti, M. , Tai, H. Y. , Shakesheff, K. M. , Howdle, S. M. , 2007. Sorption and Swelling of Poly(D, L-lactic acid) and Poly(lactic-co-glycolic acid) in Supercritical CO2. Macromol. Symp. 259, 197-202. doi: 10.1002/masy.200751323
    Pochanavanich, P. , Suntornsuk, W. , 2002. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 35, 17-21. doi: 10.1046/j.1472-765X.2002.01118.x
    Prasad, T. , Shabeena, E. A. , Vinod, D. , Kumary, T. V. , Anil Kumar, P. R. , 2015. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J Mater Sci Mater Med 26, 5352. http://www.ncbi.nlm.nih.gov/pubmed/25578706
    Qu, D. F. , Han, J. Z. , 2016. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet. R. Bras. Zootec. 45, 661-666. doi: 10.1590/s1806-92902016001100004
    Rahmani del Bakhshayesh, A. , Annabi, N. , Khalilov, R. , Akbarzadeh, A. , Samiei, M. , Alizadeh, E. , Alizadeh-Ghodsi, M. , Davaran, S. , Montaseri, A. , 2018. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol. 46, 691-705. doi: 10.1080/21691401.2017.1349778
    Rajitha, P. , Gopinath, D. , Biswas, R. , Sabitha, M. , Jayakumar, R. , 2016. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin. Drug Del. 13, 1177-1194. doi: 10.1080/17425247.2016.1178232
    Ran, L. X. , Zou, Y. N. , Cheng, J. W. , Lu, F. , 2019. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int. J. Biol. Macromol. 125, 392-403. doi: 10.1016/j.ijbiomac.2018.12.052
    Ravishankar, K. , Venkatesan, M. , Desingh, R. P. , Mahalingam, A. , Sadhasivam, B. , Subramaniyam, R. , Dhamodharan, R. , 2019. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C 102, 447-457. doi: 10.1016/j.msec.2019.04.038
    Ruiz, G. A. M., Corrales, H. F. Z., 2017. Chitosan, chitosan derivatives and their biomedical applications. In: Shalaby, E. (Eds. ). Biological Activities and Application of Marine Polysaccharides, Books on Demand (BoD), 87-106.
    Sacco, P. , Furlani, F. , de Marzo, G. , Marsich, E. , Paoletti, S. , Donati, I. , 2018. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels 4, 67. doi: 10.3390/gels4030067
    Sagheer, F. A. A. , Al-Sughayer, M. A. , Muslim, S. , Elsabee, M. Z. , 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410-419. doi: 10.1016/j.carbpol.2009.01.032
    Sah, M. K. , Rath, S. N. , 2016. Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater. Sci. Eng. C 67, 807-821. doi: 10.1016/j.msec.2016.05.005
    Saharan, V. , Sharma, G. , Yadav, M. , Choudhary, M. K. , Sharma, S. S. , Pal, A. , Raliya, R. , Biswas, P, 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 75, 346-353. doi: 10.1016/j.ijbiomac.2015.01.027
    Salehi, M. , Farzamfar, S. , Bastami, F. , Tajerian, R. , 2016. Fabrication and characterization of electrospun plla/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed. Eng. Appl. Basis Commun. 28, 1650035. doi: 10.4015/S1016237216500356
    Sami El-banna, F. , Mahfouz, M. E. , Leporatti, S. , El-Kemary, M. , Hanafy, N. A. N. , 2019. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl. Sci. 9, 2193. doi: 10.3390/app9112193
    Sarkar, S. D. , Farrugia, B. L. , Dargaville, T. R. , Dhara, S. , 2013. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J. Biomed. Mater. Res. Part A 101, 3482-3492. doi: 10.1002/jbm.a.34660
    Sharma, S. , Batra, S. , 2019. Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application. Materials for Biomedical Engineering. Amsterdam: Elsevier, 97-119.
    Shpichka, A. , Butnaru, D. , Bezrukov, E. A. , Sukhanov, R. B. , Atala, A. , Burdukovskii, V. , Zhang, Y. Y. , Timashev, P. , 2019. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 10, 94. doi: 10.1186/s13287-019-1203-3
    Sionkowska, A. , Płanecka, A. , 2013. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J. Mol. Liq. 178, 5-14. doi: 10.1016/j.molliq.2012.10.042
    Sivashankari, P. R. , Prabaharan, M. , 2016. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol. 93, 1382-1389. doi: 10.1016/j.ijbiomac.2016.02.043
    Tamer, T. M. , Valachová, K. , Hassan, M. A. , Omer, A. M. , El-Shafeey, M. , Mohy Eldin, M. S. , Šoltés, L. , 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Mater. Sci. Eng. : C 90, 227-235. doi: 10.1016/j.msec.2018.04.053
    Tomida, H. , Fujii, T. , Furutani, N. , Michihara, A. , Yasufuku, T. , Akasaki, K. , Maruyama, T. , Otagiri, M. , Gebicki, J. M. , Anraku, M. , 2009. Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res. 344, 1690-1696. doi: 10.1016/j.carres.2009.05.006
    Tong, C. , Hao, H. J. , Xia, L. , Liu, J. J. , Ti, D. D. , Dong, L. , Hou, Q. , Song, H. J. , Liu, H. L. , Zhao, Y. L. , Fu, X. B. , Han, W. D. , 2016. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 24, 45-56. doi: 10.1111/wrr.12369
    Tsigos, I. , Martinou, A. , Kafetzopoulos, D. , Bouriotis, V. , 2000. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 18, 305-312. doi: 10.1016/S0167-7799(00)01462-1
    Tu, J. , Xu, Y. L. , Xu, J. Q. , Ling, Y. , Cai, Y. Q. , 2016. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int. J. Biol. Macromol. 86, 848-856. doi: 10.1016/j.ijbiomac.2016.02.015
    Vilar, J. C. Jr, Ribeaux, D. R. , Alves da Silva, C. A. , de Campos-Takaki, G. M. , 2016. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. 2016, 1-7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961830/
    Visentin, A. F. , Dong, T. Y. , Poli, J. , Panzer, M. J. , 2014. Rapid, microwave-assisted thermal polymerization of poly(ethylene glycol) diacrylate-supported ionogels. J. Mater. Chem. A 2, 7723. doi: 10.1039/c4ta00907j
    Vivcharenko, V. , Benko, A. , Palka, K. , Wojcik, M. , Przekora, A. , 2020. Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. Int. J. Biol. Macromol. 164, 172-183. doi: 10.1016/j.ijbiomac.2020.07.099
    Wahid, F. , Khan, T. , Hussain, Z. , Ullah, H. , 2018. Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin Asiri, A. M. , Mohammad, A. (Eds. ). Applications of Nanocomposite Materials in Drug Delivery. UK: Woodhead Publishing, 701-735.
    Xie, Y. , Yi, Z. X. , Wang, J. X. , Hou, T. G. , Jiang, Q. , 2018. Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 1225-1233. doi: 10.1016/j.ijbiomac.2018.02.075
    Xu, Z. P. , Shi, L. Y. , Yang, M. Y. , Zhang, H. P. , Zhu, L. J. , 2015. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J. Mater. Chem. B 3, 3634-3642. doi: 10.1039/C5TB00226E
    Yamada, M. , Kurano, M. , Inatomi, S. , Taguchi, G. , Okazaki, M. , Shimosaka, M. , 2008. Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 289, 130-137. doi: 10.1111/j.1574-6968.2008.01361.x
    Yang, E. J. , Kim, J. G. , Kim, J. Y. , Kim, S. C. , Lee, N. H. , Hyun, C. G. , 2010. Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Central Eur. J. Biol. 5, 95-102.
    Yen, M. T. , Tseng, Y. H. , Li, R. C. , Mau, J. L. , 2007. Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci. Technol. 40, 255-261. doi: 10.1016/j.lwt.2005.08.006
    Younes, I. , Rinaudo, M, 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13, 1133-1174. doi: 10.3390/md13031133
    Yuan, J. , Hou, Q. , Chen, D. , Zhong, L. , Dai, X. , Zhu, Z. , Li, M. , Fu, X. , 2020. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci China Life Sci. 63, 552-562. doi: 10.1007/s11427-018-9389-6
    Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X, 2010. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res A 95, 870-881. http://www.ncbi.nlm.nih.gov/pubmed/20824649
    Zhang, J. J. , Yang, Z. , Li, C. , Dou, Y. N. , Li, Y. J. , Thote, T. , Wang, D. A. , Ge, Z. G. , 2013. Cells behave distinctly within sponges and hydrogels due to differences of internal structure. Tissue Eng. Part A 19, 2166-2175. doi: 10.1089/ten.tea.2012.0393
    Zhao, Y. , Park, R. D. , Muzzarelli, R. A. , 2010. Chitin deacetylases: properties and applications. Mar. Drugs 8, 24-46. doi: 10.3390/md8010024
    Zhong, Z. M. , Chen, R. , Xing, R. , Chen, X. L. , Liu, S. , Guo, Z. Y. , Ji, X. , Wang, L. , Li, P. C. , 2007. Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydr. Res. 342, 2390-2395. doi: 10.1016/j.carres.2007.07.015
    Zhou, H. Y. , Zhang, Y. P. , Zhang, W. F. , Chen, X. G. , 2011. Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr. Polym. 83, 1643-1651. doi: 10.1016/j.carbpol.2010.10.022
    Ziani, K. , Fernández-Pan, I. , Royo, M. , Maté, J. I. , 2009. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 23, 2309-2314. doi: 10.1016/j.foodhyd.2009.06.005
    Zou, P. , Lee, W. H. , Gao, Z. , Qin, D. , Wang, Y. , Liu, J. , Sun, T. , Gao, Y. , 2020. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym. 232, 115786. doi: 10.1016/j.carbpol.2019.115786
    Zulkifli, F. H. , Hussain, F. S. J. , Zeyohannes, S. S. , Rasad, M. S. B. A. , Yusuff, M. M. , 2017. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C 79, 151-160. doi: 10.1016/j.msec.2017.05.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (150) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return