Volume 7 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
Ruoshi Gao, Yi Jing, Yeyan Ni, Qiwen Jiang. Effects of chitin nanocrystals on coverage of coating layers and water retention of coating color[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 201-210. doi: 10.1016/j.jobab.2021.11.003
Citation: Ruoshi Gao, Yi Jing, Yeyan Ni, Qiwen Jiang. Effects of chitin nanocrystals on coverage of coating layers and water retention of coating color[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 201-210. doi: 10.1016/j.jobab.2021.11.003

Effects of chitin nanocrystals on coverage of coating layers and water retention of coating color

doi: 10.1016/j.jobab.2021.11.003
More Information
  • Corresponding author: E-mail address: jingyi@njfu.edu.cn (Y. Jing)
  • Received Date: 2021-05-15
  • Accepted Date: 2021-09-22
  • Rev Recd Date: 2021-09-16
  • Available Online: 2021-11-06
  • Publish Date: 2022-07-31
  • This study assessed the applicability of chitin nanocrystals prepared by 2, 2, 6, 6-Tetramethyl-1-Piperidine-1-oxyl radical (TEMPO)-mediated oxidation in traditional papermaking coating color systems. The α-chitin nanocrystals (CTNCs) with different carboxyl content, size, and morphology were prepared from crab shells by alkali pretreatment and TEMPO-mediated oxidation in the water at pH 10, and then the ratio of CTNCs to latex was applied to traditional coating color system to replace part of latex. The results showed that when the amount of NaClO added as co-oxidant in the oxidation was 15.0 mmol/g of chitin, the carboxyl content of alkali-pretreated CTNCs was up to 0.76 mmol/g. The amount of carboxyl groups presented a linear relation with the degree of individualization of nanocrystals and dispersion. When the ratio of latex to CTNCs was 90꞉10, the water retention value of the coating was 92% lower than that of the pure latex system, and the rheological property was better. The relationship between the addition amount of CTNCs and the surface strength and the coverage of coating layers were also studied, and results showed that when the ratio of latex to CTNCs was 95꞉5, the surface strength was the highest of 1.45 m/s, and the coverage of coating layers rate reached the highest of 78%.


  • loading
  • Aulin, C., Gällstedt, M., Lindström, T., 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17, 559–574. doi: 10.1007/s10570-009-9393-y
    Bezrodnikh, E.A., Tikhonov, V.E., Lopezllorca, L.V., 2010. Separation of chitin from seafood wastes and preparation of chitosan. Fish Industry 2, 9–12.
    Boger, D.V., 1977. A highly elastic constant-viscosity fluid. J. Non Newton. Fluid Mech. 3, 87–91. doi: 10.1016/0377-0257(77)80014-1
    Chen, Q.J., Dong, X.F., Zhou, L.L., Zheng, X.M., Wang, P., 2017. Application of nano carboxymethyl starch in micro weight coated paper. Chem. Ind. For. Prod. 37, 107–112.
    Chen, S., Jiang, S.F., Jiang, H., 2020. A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. J. Bioresour. Bioprod. 5, 238–247. doi: 10.1016/j.jobab.2020.10.002
    Dimic-Misic, K., Gane, P.A.C., Paltakari, J., 2013. Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind. Eng. Chem. Res. 52, 16066–16083. doi: 10.1021/ie4028878
    Fan, Y.M., Saito, T., Isogai, A., 2008. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules 9, 192–198. doi: 10.1021/bm700966g
    Focher, B., Beltrame, P.L., Naggi, A., Torri, G., 1990. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr. Polym. 12, 405–418. doi: 10.1016/0144-8617(90)90090-F
    Grankvist, T., Kokko, A., Anaes, P.H., Rutanen, A., 2001. New approach in water retention measurement. Wochenblatt Fur Pap 129, 1078–1091.
    Hamada, H., Bousfield, D.W., 2010. Nanofibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. Novemb 9, 25–29 2010.
    Hiscock, D.F., Merrifield, T.B., 2000. Coating immobilization using soy protein polymers: technical concepts and importance to quality. J. Korea Tech. Assoc. Pulp Pap. Ind. 32, 7.
    Huang, Y.W., Niu, X.J., Bi, F., 2012. Development of paper's surface picking and printability. J. Xi'an Univ. Technol. 28, 189–192.
    Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., Yano, H., 2009. Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules 10, 1584–1588. doi: 10.1021/bm900163d
    Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85. doi: 10.1039/C0NR00583E
    Jäder, J., Engström, G., 2004. Frequency analysis evaluation of base sheet structure in a pilot coating trial using different thickener systems. Nord. Pulp Pap. Res. J. 19, 360–365. doi: 10.3183/npprj-2004-19-03-p360-365
    Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., Tamura, H., 2010. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 82, 227–232. doi: 10.1016/j.carbpol.2010.04.074
    Jiang, J., Chen, H., Liu, L., Yu, J., Fan, Y.M., Saito, T., Isogai, A., 2020. Influence of chemical and enzymatic TEMPO-mediated oxidation on chemical structure and nanofibrillation of lignocellulose. ACS Sustainable Chem. Eng. 8, 14198–14206. doi: 10.1021/acssuschemeng.0c05291
    Jiang, J., Ye, W.B., Liu, L., Wang, Z.G., Fan, Y.M., Saito, T., Isogai, A., 2017. Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromolecules 18, 288–294. doi: 10.1021/acs.biomac.6b01682
    Li, M.C., Wu, Q.L., Song, K.L., Lee, S., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chem. Eng. 3, 821–832. doi: 10.1021/acssuschemeng.5b00144
    Liu, J., 2004. The hydrokinetics of the coatings—the applied technology. East China Pulp Pap. Ind. 35, 35–40.
    Liu, J.G., Peng, J.J., Wang, B.S., Cao, Z.L., 2003. Effect of CMC on coating water retention property. China Pulp Pap 22, 3–6.
    Liu, L.Q., Seta, F.T., An, X.Y., Yang, J., Zhang, W., Dai, H.Q., Cao, H.B., Xu, Q.L., Liu, H.B., 2020. Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles. Cellulose 27, 9853–9875. doi: 10.1007/s10570-020-03499-7
    Miao, X.R., Lin, J.Y., Bian, F.G., 2020. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J. Bioresour. Bioprod. 5, 26–36. doi: 10.1016/j.jobab.2020.03.003
    Ni, Y.Y., Yi, J., 2019. Research on improving the surface hydrophobicity of paper coated by poly-vinyl alcohol -itaconic acid grafting copolymer. Prog. Org. Coat. 131, 152–158. doi: 10.1016/j.porgcoat.2019.02.006
    Oh, K., Lee, J.H., Im, W., Rajabi Abhari, A., Lee, H.L., 2017. Role of cellulose nanofibrils in structure formation of pigment coating layers. Ind. Eng. Chem. Res. 56, 9569–9577. doi: 10.1021/acs.iecr.7b02750
    Okita, Y., Saito, T., Isogai, A., 2010. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11, 1696–1700. doi: 10.1021/bm100214b
    Ou, H.J., Chen, G., Jiang, C.Y., Wang, C.C., Liu, Y., Che, M.Y., 2017. Preparation of cellulose nanofibrils and its application in paper coating. Pap. Sci. Technol. 36, 57–60.
    Pang, J.J., Zhao, C.S., Han, W.J., 2009. Effect of water retention value on the performance of coating and the coated paper. Pap. Sci. Technol. 28, 81–83 87.
    Patel, I., Opietnik, M., Böhmdorfer, S., Becker, M., Potthast, A., Saito, T., Isogai, A., Rosenau, T., 2010. Side reactions of 4-acetamido-TEMPO as the catalyst in cellulose oxidation systems. Holzforschung 64, 549–554.
    Rojo, E., Alonso, M.V., Domínguez, J.C., Saz-Orozco, B.D., Oliet, M., Rodriguez, F., 2013. Alkali treatment of viscose cellulosic fibers from Eucalyptus wood: Structural, morphological, and thermal analysis. J. Appl. Polym. Sci. 130, 2198–2204. doi: 10.1002/app.39399
    Roy, C., Budtova, T., Navard, P., Bedue, O., 2001. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2, 687–693. doi: 10.1021/bm010002r
    Saito, T., Isogai, A., 2004. TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989. doi: 10.1021/bm0497769
    Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491. doi: 10.1021/bm0703970
    Salaberria, A.M., Fernandes, S.C.M., Diaz, R.H., Labidi, J., 2015. Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. Niger. Carbohydr. Polym. 116, 286–291. doi: 10.1016/j.carbpol.2014.04.047
    Singhal, A.K., Kumar, S., Gupta, S., Bhardwaj, N.K., Varadhan, R., 2015. Calcium sulphate as pigment for improved functional properties of coated paper. Prog. Org. Coat. 79, 31–36. doi: 10.1016/j.porgcoat.2014.11.002
    Sun, Y., Han, S., Ma, L., Cai, L.Y., Zhang, Y.H., 2018. Effect of acid and alkali concentration on the extracting process of bigeye tuna skin gelatin. Food Ferment. Ind. 44, 73–81.
    Tang, Y.J., Mosseler, J.A., He, Z.B., Ni, Y.H., 2014. Imparting cellulosic paper of high conductivity by surface coating of dispersed graphite. Ind. Eng. Chem. Res. 53, 10119–10124. doi: 10.1021/ie500558f
    Tsaih, M.L., Chen, R.H., 2003. The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. J. Appl. Polym. Sci. 88, 2917–2923. doi: 10.1002/app.11986
    Wang, Y.L., Zhang, H.W., 2009. Preparation of phosphorylated oxidized starch and its application in coating paper. Pap. Sci. Technol. 28, 66–69.
    Wu, S.B., Liu, J.Y., Yan, Q.S., Sun, Q.Y., 2011. Study on dissolving out law and physical and chemical properties of elm phloem extractives. Pap. Sci. Technol. 30, 1–9.
    Xu, H., Zhu, Y.L., Dai, H.Q., 2017. Properties of carboxymethyl modified nanofibrillated cellulose and its influence on pigment dispersion and coating property. Trans. China Pulp Pap. 32, 16–21.
    Xu, L., Liu, J.G., 2010. A new method for measuring roughening of base paper during coating. China Pulp Pap 29, 36–40.
    Yang, S.J., Tang, Y.J., Wang, J.M., Kong, F.G., Zhang, J.H., 2014. Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind. Eng. Chem. Res. 53, 13980–13988. doi: 10.1021/ie502125s
    Ye, W.B., Hu, Y.L., Ma, H.Z., Liu, L., Yu, J., Fan, Y.M., 2020. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems. Carbohydr. Polym. 237, 116125. doi: 10.1016/j.carbpol.2020.116125
    Zhong, T.H., Wolcott, M.P., Liu, H., Wang, J.W., 2019. Developing chitin nanocrystals for flexible packaging coatings. Carbohydr. Polym. 226, 115276. doi: 10.1016/j.carbpol.2019.115276
    Zinatloo-Ajabshir, S., Morassaei, M.S., Amiri, O., Salavati-Niasari, M., Foong, L.K., 2020. Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196. doi: 10.1016/j.ceramint.2020.03.014
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (10) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint