Volume 7 Issue 4
Oct.  2022
Turn off MathJax
Article Contents
Qingxin Zheng, Zixian Li, Masaru Watanabe. Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 221-244. doi: 10.1016/j.jobab.2022.09.004
Citation: Qingxin Zheng, Zixian Li, Masaru Watanabe. Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 221-244. doi: 10.1016/j.jobab.2022.09.004

Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review

doi: 10.1016/j.jobab.2022.09.004
More Information
  • Traditional disposal methods of biomass and plastic waste, such as landfill, combustion, and compost, no longer meet the requirements of carbon reduction, carbon neutrality, and sustainable society due to low utilization efficiency and severe pollution. As a green, efficient and environmentally-friendly method, hydrothermal technology has been paid much attention to and has already been applied to recycle or reuse various plastic and biomass wastes. No matter for the single or mixed type of waste, it is expected to achieve efficient recycling and obtain value-added products through the hydrothermal process. This review summarized the basic knowledge of hydrothermal technology and the possible reaction mechanism of biomass and plastics under hydrothermal conditions and listed the previous reports on the application of hydrothermal technology for converting wastes of biomass, plastic, and biomass/plastic mixtures to solid fuels. Moreover, regarding the future of hydrothermal technology, four points related to reaction mechanism, synergistic effect, catalysis, and scaled-up application, were provided for consideration.


  • Declaration of Competing Interest  There are no conflicts to declare.
  • loading
  • Akimoto, M., Ninomiya, K., Takami, S., Ishikawa, M., Sato, M., Washio, K., 2002. Hydrothermal dechlorination and denitrogenation of municipal-waste-plastics-derived fuel oil under sub- and supercritical conditions. Ind. Eng. Chem. Res. 41, 5393–5400 doi: 10.1021/ie020338x
    Álvarez-Murillo, A., Sabio, E., Ledesma, B., Román, S., González-García, C.M., 2016. Generation of biofuel from hydrothermal carbonization of cellulose. Kinet. Modell. Energy 94, 600–608
    Antero, R.V.P., Domingos, M.E.G.R., Suzuki, L.L., Oliveira, S.B., Ojala, S.A., Mendonça, A.R.V., Brum, S.S., 2019. Obtaining hydrochar via hydrothermal carbonization of Magonia pubescens A. St. Hil. Sapindaceae fruit bark: Characterization and evaluation of its adsorptive properties. Matéria 24, e-12378
    Awaja, F., Pavel, D., 2005. Recycling of pet. Eur. Polym. J. 41, 1453–1477 doi: 10.1016/j.eurpolymj.2005.02.005
    Bach, Q.V., Tran, K.Q., Khalil, R.A., Skreiberg, Ø., Seisenbaeva, G., 2013. Comparative assessment of wet torrefaction. Energy Fuels 27, 6743–6753 doi: 10.1021/ef401295w
    Borrero-López, A.M., Masson, E., Celzard, A., Fierro, V., 2018. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Ind. Crops Prod. 124, 919–930 doi: 10.1016/j.indcrop.2018.08.045
    Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., Renz, M., 2016. Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chem. 18, 1051–1060 doi: 10.1039/C5GC02296G
    Cao, L.C., Zhang, C., Chen, H.H., Tsang, D.C.W., Luo, G., Zhang, S.C., Chen, J.M., 2017. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol. 245, 1184–1193 doi: 10.1016/j.biortech.2017.08.196
    Cao, X.Y., Ro, K.S., Libra, J.A., Kammann, C.I., Lima, I., Berge, N., Li, L., Li, Y., Chen, N., Yang, J., Deng, B.L., Mao, J.D., 2013. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars. J. Agric. Food Chem. 61, 9401–9411 doi: 10.1021/jf402345k
    Carta, D., Cao, G., D'Angeli, C., 2003. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ. Sci. Pollut. Res. Int. 10, 390–394 doi: 10.1065/espr2001.12.104.8
    Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 doi: 10.1016/j.pecs.2003.10.004
    Elliott, D.C., 2008. Catalytic hydrothermal gasification of biomass. Biofuels, Bioprod. Bioref. 2, 254–265 doi: 10.1002/bbb.74
    Foong, S.Y., Liew, R.K., Yang, Y.F., Cheng, Y.W., Yek, P.N.Y., Wan Mahari, W.A., Lee, X.Y., Han, C.S., Vo, D.V.N., Van Le, Q., Aghbashlo, M.A., Tabatabaei, M., Sonne, C., Peng, W.X., Lam, S.S., 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 389, 124401 doi: 10.1016/j.cej.2020.124401
    Forchheim, D., Hornung, U., Kruse, A., Sutter, T., 2014. Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valoriz. 5, 985–994 doi: 10.1007/s12649-014-9307-6
    Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciá-Agulló, J.A., Fiol, S., López, R., Smernik, R.J., Aitkenhead, W.P., Arce, F., Macias, F., 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 48, 618–626 doi: 10.1071/SR10010
    Gao, P., Zhou, Y.Y., Meng, F., Zhang, Y.H., Liu, Z.H., Zhang, W.Q., Xue, G., 2016. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97, 238–245 doi: 10.1016/j.energy.2015.12.123
    Gollakota, A.R.K., Kishore, N., Gu, S., 2018. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392 doi: 10.1016/j.rser.2017.05.178
    Gupta, D., Mahajani, S.M., Garg, A., 2019. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresour. Technol. 285, 121329 doi: 10.1016/j.biortech.2019.121329
    Helmer Pedersen, T., Conti, F., 2017. Improving the circular economy via hydrothermal processing of high-density waste plastics. Waste Manag. 68, 24–31 doi: 10.1016/j.wasman.2017.06.002
    Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., Felix, L., 2013. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conv. Bioref. 3, 113–126 doi: 10.1007/s13399-012-0066-y
    Hongthong, S., Raikova, S., Leese, H.S., Chuck, C.J., 2020. Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction. Waste Manag. 102, 351–361 doi: 10.1016/j.wasman.2019.11.003
    Hu, Y.L., Gong, M.Y., Xing, X.L., Wang, H.Y., Zeng, Y.M., Xu, C.C., 2020. Supercritical water gasification of biomass model compounds: a review. Renew. Sustain. Energy Rev. 118, 109529 doi: 10.1016/j.rser.2019.109529
    Huang, N., Zhao, P.T., Ghosh, S., Fedyukhin, A., 2019. Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production. Appl. Energy 240, 882–892 doi: 10.1016/j.apenergy.2019.02.050
    Iñiguez, M.E., Conesa, J.A., Fullana, A., 2019. Hydrothermal carbonization (HTC) of marine plastic debris. Fuel 257, 116033 doi: 10.1016/j.fuel.2019.116033
    Janajreh, I., Alshrah, M., Zamzam, S., 2015. Mechanical recycling of PVC plastic waste streams from cable industry: a case study. Sustain. Cities Soc. 18, 13–20 doi: 10.1016/j.scs.2015.05.003
    Kruse, A., Funke, A., Titirici, M.M., 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17, 515–521 doi: 10.1016/j.cbpa.2013.05.004
    Kumar, V., Pathak, P., Bhardwaj, N.K., 2020. Waste paper: an underutilized but promising source for nanocellulose mining. Waste Manag. 102, 281–303 doi: 10.22190/fume200218028k
    Lee, J., Kwon, E.E., Lam, S.S., Chen, W.H., Rinklebe, J., Park, Y.K., 2021. Chemical recycling of plastic waste via thermocatalytic routes. J. Clean. Prod. 321, 128989 doi: 10.1016/j.jclepro.2021.128989
    Li, L., Hale, M., Olsen, P., Berge, N.D., 2014. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes. Waste Manag. 34, 2185–2195 doi: 10.1016/j.wasman.2014.06.024
    Lin, Y.S., Ma, X.Q., Peng, X.W., Yu, Z.S., 2017. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior. Bioresour. Technol. 243, 539–547 doi: 10.1016/j.biortech.2017.06.117
    Liu, Z.G., Quek, A., Kent Hoekman, S., Balasubramanian, R., 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949 doi: 10.1016/j.fuel.2012.07.069
    Loppinet-Serani, A., Aymonier, C., Cansell, F., 2008. Current and foreseeable applications of supercritical water for energy and the environment. ChemSusChem 1, 486–503 doi: 10.1002/cssc.200700167
    Lu, J.W., Watson, J., Liu, Z.D., Wu, Y.L., 2022. Elemental migration and transformation during hydrothermal liquefaction of biomass. J. Hazard. Mater. 423, 126961 doi: 10.1016/j.jhazmat.2021.126961
    Lucian, M., Volpe, M., Gao, L.H., Piro, G., Goldfarb, J.L., Fiori, L., 2018. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233, 257–268 doi: 10.1016/j.fuel.2018.06.060
    Marzbali, M.H., Kundu, S., Halder, P., Patel, S., Hakeem, I.G., Paz-Ferreiro, J., Madapusi, S., Surapaneni, A., Shah, K., 2021. Wet organic waste treatment via hydrothermal processing: a critical review. Chemosphere 279, 130557 doi: 10.1016/j.chemosphere.2021.130557
    Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J., 2011. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 102, 9255–9260 doi: 10.1016/j.biortech.2011.06.099
    Nguyen, S.T., Feng, J.D., Le, N.T., Le, A.T.T., Hoang, N., Tan, V.B.C., Duong, H.M., 2013. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 52, 18386–18391 doi: 10.1021/ie4032567
    OECD, 2022. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Available at: doi: 10.1787/de747aef-en
    Onwudili, J.A., Yildirir, E., Williams, P.T., 2013. Catalytic hydrothermal degradation of carbon reinforced plastic wastes for carbon fibre and chemical feedstock recovery. Waste Biomass Valoriz. 4, 87–93 doi: 10.1007/s12649-013-9204-4
    Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, M.J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32–65 doi: 10.1039/b810100k
    Poerschmann, J., Weiner, B., Woszidlo, S., Koehler, R., Kopinke, F.D., 2015. Hydrothermal carbonization of poly(vinyl chloride). Chemosphere 119, 682–689 doi: 10.1016/j.chemosphere.2014.07.058
    Sarker, T.R., Pattnaik, F., Nanda, S., Dalai, A.K., Meda, V., Naik, S., 2021. Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284, 131372 doi: 10.1016/j.chemosphere.2021.131372
    Schmieder, H., Abeln, J., Boukis, N., Dinjus, E., Kruse, A., Kluth, M., Petrich, G., Sadri, E., Schacht, M., 2000. Hydrothermal gasification of biomass and organic wastes. J. Supercrit. Fluids 17, 145–153 doi: 10.1016/S0896-8446(99)00051-0
    Sevilla, M., Maciá-Agulló, J.A., Fuertes, A.B., 2011. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35, 3152–3159 doi: 10.1016/j.biombioe.2011.04.032
    Shen, M.C., Huang, W., Chen, M., Song, B., Zeng, G.M., Zhang, Y.X., 2020. (Micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138 doi: 10.1016/j.jclepro.2020.120138
    Shen, Y.F., 2016. Dechlorination of Poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production. Ind. Eng. Chem. Res. 55, 11638–11644 doi: 10.1021/acs.iecr.6b03365
    Shen, Y.F., Yu, S.L., Ge, S., Chen, X.M., Ge, X.L., Chen, M.D., 2017. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy 118, 312–323 doi: 10.1016/j.energy.2016.12.047
    Shen, Y.F., Zhao, R., Wang, J.F., Chen, X.M., Ge, X.L., Chen, M.D., 2016. Waste-to-energy: dehalogenation of plastic-containing wastes. Waste Manag. 49, 287–303 doi: 10.1016/j.wasman.2015.12.024
    Sun, L., Gong, Y.N., Li, D.L., Pan, C.X., 2022. Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem. 24, 3864–3894 doi: 10.1039/d2gc00099g
    Takeshita, Y., Kato, K., Takahashi, K., Sato, Y., Nishi, S., 2004. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J. Supercrit. Fluids 31, 185–193 doi: 10.1016/j.supflu.2003.10.006
    Toor, S.S., Rosendahl, L., Rudolf, A., 2011. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36, 2328–2342 doi: 10.1016/j.energy.2011.03.013
    Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., Marty, A., 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 doi: 10.1038/s41586-020-2149-4
    Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481 doi: 10.1016/j.rser.2015.10.122
    Uddin, M.A., Bhaskar, T., Kusaba, T., Hamano, K., Muto, A., Sakata, Y., 2003. Debromination of flame retardant high impact polystyrene (HIPS-Br) by hydrothermal treatment and recovery of bromine free plastics. Green Chem. 5, 260–263 doi: 10.1039/b206704h
    Vijayakumar, M., Sankar, A.B., Rohita, D.S., Rao, T.N., Karthik, M., 2019. Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications. ACS Sustain. Chem. Eng. 7, 17175–17185 doi: 10.1021/acssuschemeng.9b03568
    Vlaskin, M., Vladimirov, G.N., 2018. Hydrothermal carbonization of organic components from municipal solid waste. Theor. Found. Chem. Eng. 52, 996–1003 doi: 10.1134/s0040579518050421
    Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., van Harmelen, T., de Wild, P., van der Laan, G.P., Meirer, F., Keurentjes, J.T.F., Weckhuysen, B.M., 2020. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed Engl. 59, 15402–15423 doi: 10.1002/anie.201915651
    Waldner, M.H., Vogel, F., 2005. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind. Eng. Chem. Res. 44, 4543–4551 doi: 10.1021/ie050161h
    Wang, B.F., Huang, Y.R., Zhang, J.J., 2015. Sulfur distribution during hydrothermal liquefaction of lignite, wheat straw and plastic waste in sub-critical water. China Petrol. Process. Petrochem. Technol. 17, 24–30
    Wang, Y.Z., Wang, Y., Zhu, Y.T., Fang, C.Q., Xu, D.H., Zheng, X., 2021. Interactions of the main components in paper-plastic-aluminum complex packaging wastes during the hydrothermal liquefaction process. Chem. Eng. Technol. 44, 1519–1527 doi: 10.1002/ceat.202100124
    Watanabe, M., Kanaguri, Y., Smith, R.L., 2018. Hydrothermal separation of lignin from bark of Japanese cedar. J. Supercrit. Fluids 133, 696–703 doi: 10.1016/j.supflu.2017.09.009
    Wikberg, H., Grönqvist, S., Niemi, P., Mikkelson, A., Siika-aho, M., Kanerva, H., Käsper, A., Tamminen, T., 2017. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues. Bioresour. Technol. 235, 70–78 doi: 10.1016/j.biortech.2017.03.095
    Wu, X.Y., Fu, J., Lu, X.Y., 2013. Kinetics and mechanism of hydrothermal decomposition of lignin model compounds. Ind. Eng. Chem. Res. 52, 5016–5022 doi: 10.1021/ie302898q
    Xiao, L.P., Shi, Z.J., Xu, F., Sun, R.C., 2012. Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 118, 619–623 doi: 10.1016/j.biortech.2012.05.060
    Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035 doi: 10.1016/j.biortech.2021.126035
    Yoshimura, M., Byrappa, K., 2008. Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43, 2085–2103 doi: 10.1007/s10853-007-1853-x
    Zeng, M.X., Ge, Z.F., Ma, Y.N., Zha, Z.T., Zhang, H.Y., 2021. On-line analysis of the correlation between gasification characteristics and microstructure of woody biowaste after hydrothermal carbonization. Bioresour. Technol. 342, 126009 doi: 10.1016/j.biortech.2021.126009
    Zhao, P.T., Shen, Y.F., Ge, S.F., Chen, Z.Q., Yoshikawa, K., 2014a. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 131, 345–367 doi: 10.1016/j.apenergy.2014.06.038
    Zhao, X.Y., Xia, Y.H., Zhan, L., Xie, B., Gao, B., Wang, J.L., 2019. Hydrothermal treatment of E-waste plastics for tertiary recycling: product slate and decomposition mechanisms. ACS Sustain. Chem. Eng. 7, 1464–1473 doi: 10.1021/acssuschemeng.8b05147
    Zhao, X.Y., Zhan, L., Xie, B., Gao, B., 2018. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: characterization and potential applications. Chemosphere 207, 742–752 doi: 10.1016/j.chemosphere.2018.05.156
    Zhao, Y., Lu, W.J., Chen, J.J., Zhang, X.F., Wang, H.T., 2014b. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Front. Environ. Sci. Eng. 8, 151–161 doi: 10.1007/s11783-013-0607-z
    Zhao, Y.L., Jia, G.C., Shang, Y.L., Zhao, P.T., Cui, X., Guo, Q.J., 2022. Chlorine migration during hydrothermal carbonization of recycled paper wastes and fuel performance of hydrochar. Process. Saf. Environ. Prot. 158, 495–502 doi: 10.1016/j.psep.2021.12.041
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(5)

    Article Metrics

    Article views (77) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint