Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
O.D. Arefieva, M.S. Vasilyeva, L.A. Zemnukhova, D.P. Opra, D.A. Nikolaeva, V.V. Tkachev, D.H. Shlyk. Effect of silica source on photocatalytic properties of Bi2O3/Bi2SiO5 heterostructure[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 176-186. doi: 10.1016/j.jobab.2023.03.003
Citation: O.D. Arefieva, M.S. Vasilyeva, L.A. Zemnukhova, D.P. Opra, D.A. Nikolaeva, V.V. Tkachev, D.H. Shlyk. Effect of silica source on photocatalytic properties of Bi2O3/Bi2SiO5 heterostructure[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 176-186. doi: 10.1016/j.jobab.2023.03.003

Effect of silica source on photocatalytic properties of Bi2O3/Bi2SiO5 heterostructure

doi: 10.1016/j.jobab.2023.03.003
More Information
  • Corresponding author: E-mail address: arefeva.od@dvfu.ru (O. Arefieva)
  • Available Online: 2023-03-11
  • Publish Date: 2023-05-01
  • The Bi2O3/Bi2SiO5 heterostructures were obtained with various samples of silica as a precursor: on the basis of biogenic silica isolated from rice husk and rice straw and the silica of mineral origin. A mixture of Bi(NO3)3 and SiO2 with a mass content of 15% was used for synthesizing all the samples. Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), X-ray phase, X-ray fluorescence, and ultraviolet-visible diffused reflectance spectroscopy (UV-vis DRS) were used to systematically characterize as-obtained materials. Photodegradation of methyl orange in neutral aqueous solutions (pH = 6.8) under UV irradiation was studied to evaluate their photocatalytic activities. Morphology, bandgaps, the value of the zero charge point, and photocatalytic activity of the samples depended on the characteristics of the original silica. The degree of methyl orange degradation reached the maximum values (81%−85%) for samples based on precipitated silica from rice husks, straw, and the minimum value (16%) for a composite with thermal silica from rice straw. Composites based on thermal silica from rice husks and reagents from mineral raw materials did not statistically differ from each other in the degree of methyl orange degradation (67%−74%).


  • Declaration of Competing Interest  The authors have no competing interests to declare.
  • loading
  • Adam, F., Andas, J., Rahman, I.A., 2010. A study on the oxidation of phenol by heterogeneous iron silica catalyst. Chem. Eng. J. 165, 658–667. doi: 10.1016/j.cej.2010.09.054
    Arefieva, O.D., Pirogovskaya, P.D., Panasenko, A.E., Kovekhova, A.V., Zemnukhova, L.A., 2021a. The acid-base properties of amorphous silica from straw and rice husk. Khimija Rastitel'nogo Syr'ja, 1, 327–335. doi: 10.14258/jcprm.2021017521
    Arefieva, O.D., Vasilyeva, M.S., Kuryavy, V.G., Ustinov, A.Y., Zemnukhova, L.A., Gushchina, D.D., 2020. Oxidative destruction of phenol on Fe/SiO2 catalysts. Water Sci. Technol. 81, 2189–2201. doi: 10.2166/wst.2020.277
    Arefieva, O.D., Vasilyeva, M.S., Lukiyanchuk, I.V., Sedinkina, E.S., Zemnukhova, L.A., Pisartseva, A.I., 2021b. Preparation and photocatalytic properties of β-Bi2O3/Bi2SiO5 heterostructures. Russ. J. Inorg. Chem. 66, 943–949. doi: 10.1134/s0036023621060036
    Arefieva, O.D., Vasilyeva, M.S., Zemnukhova, L.A., Timochkina, A.S., 2021c. Heterogeneous photo-Fenton oxidation of lignin of rice husk alkaline hydrolysates using Fe-impregnated silica catalysts. Environ. Technol. 42, 2220–2228. doi: 10.1080/09593330.2019.1697376
    Bailiche, Z., Cherif, L., Royer, S., Bengueddach, A., Fourmentin, S., Siffert, S., 2013. Heterogeneous advanced photo-Fenton oxidation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. MATEC Web Conf. 5, 04033. doi: 10.1051/matecconf/20130504033
    Balachandaran, K., Venckatesh, R., Sivaraj, R., 2010. Synthesis of nano TiO2-SiO2 composite using sol-gel method: effect on size, surface morphology and thermal stability. Int. J. Eng. Sci. Tech. 2, 3695–3696.
    Belik, Y., Kharlamova, T., Vodyankin, A., Svetlichnyi, V., Vodyankina, O., 2020. Mechanical activation for soft synthesis of bismuth silicates. Ceram. Int. 46, 10797–10806. doi: 10.1016/j.ceramint.2020.01.090
    Chen, R.G., Bi, J.H., Wu, L., Wang, W.J., Li, Z.H., Fu, X.Z., 2009. Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets. Inorg. Chem. 48, 9072–9076. doi: 10.1021/ic901084s
    Cheng, L.J., Hu, X.M., Hao, L., 2018. Constructing novel Bi2SiO5-Bi2O3 hybrid loaded sepiolite with enhanced visible light photocatalytic activity. J. Mater. Sci. 29, 6316–6322. doi: 10.1007/s10854-018-8611-5
    Depablos-Rivera, O., Bouyanfif, H., Zeinert, A., Le Marrec, F., Rodil, S.E., 2019. Synthesis of Bi2SiO5 thin films by confocal dual magnetron sputtering-annealing route. Thin Solid Films 688, 137258. doi: 10.1016/j.tsf.2019.04.033
    Devika, S., Tayade, R.J., 2022. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: a review. Chemosphere 304, 135300. doi: 10.1016/j.chemosphere.2022.135300
    Dou, L., Jin, X.Y., Chen, J.F., Zhong, J.B., Li, J.Z., Zeng, Y., Duan, R., 2020. One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Appl. Surf. Sci. 527, 146775. doi: 10.1016/j.apsusc.2020.146775
    Espro, C., Marini, S., Galvagno, S., 2016. Heterogeneous Fenton like catalysts for the selective oxidation of light alkanes in aqueous medium. Int. J. Appl. Chem. 12, 713–726.
    Fatimah, I., Amaliah, S.N., Andrian, M.F., Handayani, T.P., Nurillahi, R., Prakoso, N.I., Wicaksono, W.P., Chuenchom, L., 2019a. Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation. Sustain. Chem. Pharm. 13, 100149. doi: 10.1016/j.scp.2019.100149
    Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., Muraza, O., 2019b. Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon 5, e02766. doi: 10.1016/j.heliyon.2019.e02766
    Fatimah, I., Zaenuri, F.U., Doewandono, L.N., Yahya, A., Citradewi, P.W., Sagadevan, S., Oh, W.C., 2021. Biogenic silica extracted from Salacca leaf ash for salicylic acid adsorption. Sci. Technol. Indonesia 6, 296–302.
    Gan, P.P., Li, S.F.Y., 2013. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351–363. doi: 10.1016/j.cej.2013.06.020
    Ghime, D., Ghosh, P., 2017. Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk. J. Water Process. Eng. 19, 156–163. doi: 10.1016/j.jwpe.2017.07.025
    Hanna, K., Kone, T., Medjahdi, G., 2008. Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation. Catal. Commun. 9, 955–959. doi: 10.1016/j.catcom.2007.09.035
    Kovaleva, E.A., Vodyankina, O.V., Svetlichny, V.A., 2021. Interface features and electronic structure of Bi2SiO5/β-Bi2O3 hetero-junction. Proc SPIE 12086, XV International Conference on Pulsed Lasers and Laser Applications, 89–93.
    Labib, S., 2017. Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3. J. Saudi Chem. Soc. 21, 664–672. doi: 10.1016/j.jscs.2015.11.003
    Li, M., Li, F., Yin, P.G., 2014. Tailoring the band structure of β-Bi2O3 by co-doping for realized photocatalytic hydrogen generation. Chem. Phys. Lett. 601, 92–97. doi: 10.1016/j.cplett.2014.03.091
    Li, S.Y., Fan, X.Q., Gu, M.B., Cagnetta, G., Huang, J., Yu, G., 2022. Confined-space strategy for anchoring catalytic nanoparticles on Si-OH by ball milling for enhanced O3/PMS oxidation of ciprofloxacin. Chem. Eng. J. 429, 132318. doi: 10.1016/j.cej.2021.132318
    Liu, D., Wang, J., Zhang, M., Liu, Y.F., Zhu, Y.F., 2014. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. Nanoscale 6, 15222–15227. doi: 10.1039/C4NR05058D
    Lu, H.J., Hao, Q., Chen, T., Zhang, L.H., Chen, D.M., Ma, C., Yao, W.Q., Zhu, Y.F., 2018. A high-performance Bi2O3/Bi2SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B Environ. 237, 59–67. doi: 10.1016/j.apcatb.2018.05.069
    Mekarsari, H., Taftazani, A., Kamari, A., Fatimah, I., 2020. Green synthesized Fe2O3 nanoparticles and immobilization onto biogenic silica as photocatalyst for photo-decolorization of bromophenol blue. Journal of Engineering Science and Technology 15, 4356–4366.
    Natarajan, K., Bajaj, H.C., Tayade, R.J., 2016. Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation. J. Ind. Eng. Chem. 34, 146–156. doi: 10.1016/j.jiec.2015.11.003
    Natarajan, T.S., Bajaj, H.C., Tayade, R.J., 2015. Synthesis of homogeneous sphere-like Bi2WO6 nanostructure by silica protected calcination with high visible-light-driven photocatalytic activity under direct sunlight. CrystEngComm 17, 1037–1049. doi: 10.1039/C4CE01839G
    Natarajan, T.S., Natarajan, K., Bajaj, H.C., Tayade, R.J., 2013. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanopart. Res. 15, 1669. doi: 10.1007/s11051-013-1669-3
    Nilchi, A., Janitabar-Darzi, S., Rasouli-Garmarodi, S., 2011. Sol-gel preparation of nanoscale TiO2/SiO2 composite for eliminating of con red azo dye. Mater. Sci. Appl. 2, 476–480. doi: 10.4236/msa.2011.25064
    Obolenskaya, L.N., Gaynanova, A.A., Kravchenko, G.V., Kuz'micheva, G.M., Savinkina, E.V., Domoroshchina, E.N., Tsybinsky, A.M., Podbelsky, A.V., 2016. Nanocomposites based on silicon dioxide of different nature with functional titanium dioxide nanoparticles. Nanotechnol. Russia 11, 41–56. doi: 10.1134/S1995078016010110
    Purwiandono, G., Fatimah, I., Sahroni, I., Citradewi, P.W., Kamari, A., Sagadevan, S., Oh, W.C., Doong, R., 2022. Fe3O4@SiO2 nanoflakes synthesized using biogenic silica from Salacca zalacca leaf ash and the mechanistic insight into adsorption and photocatalytic wet peroxidation of dye. Green Process. Synth. 11, 345–360. doi: 10.1515/gps-2022-0034
    Shabalina, A.V., Golubovskaya, A.G., Fakhrutdinova, E.D., Kulinich, S.A., Vodyankina, O.V., Svetlichyi, V.A., 2022. Phase and structural thermal evolution of Bi-Si-O catalysts obtained via laser ablation. Nanomaterials (Basel) 12, 4101. doi: 10.3390/nano12224101
    Xie, S.H., Huang, P., Kruzic, J.J., Zeng, X.R., Qian, H.X., 2016. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci. Rep. 6, 21947. doi: 10.1038/srep21947
    Wei, W., Xie, J.M., Meng, S.C., Lü, X.M., Yan, Z.X., Zhu, J.J., Cui, H.L., 2013. Synthetic bismuth silicate nanostructures: photocatalysts grown from silica aerogels precursors. J. Mater. Res. 28, 1658–1668. doi: 10.1557/jmr.2013.65
    Yoon, J.G., Oh, H.K., Kwag, Y.J., 1998. Structural and optical properties of TiO2-SiO2 composite films prepared by aerosol-assisted chemical-vapor deposition. J. Korean Phys. Soc. 33, 699–704.
    Zemnukhova, L.A., Budaeva, V.V., Fedorishcheva, G.A., Kaydalova, T.I., Kurilenko, L.N., Shkorina, E.D., Ilysov, S.G., 2009. Inorganic components of straw and hull of an oats. Chem. Plant Raw Mater. 1, 147–152.
    Zemnukhova, L.A., Egorov, A.G., Fedorishcheva, G.A., Barinov, N.N., Sokol'nitskaya, T.A., Botsul, A.I., 2006. Properties of amorphous silica produced from rice and oat processing waste. Inorg. Mater. 42, 24–29. doi: 10.1134/S0020168506010067
    Zemnukhova, L.A., Fedorishcheva, G.A., Egorov, A.G., Sergienko, V.I., 2005. Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production. Russ. J. Appl. Chem. 78, 319–323. doi: 10.1007/s11167-005-0283-2
    Zhang, L., Wang, W.Z., Sun, S.M., Jiang, D., Gao, E.P., 2013. Solar light photocatalysis using Bi2O3/Bi2SiO5 nanoheterostructures formed in mesoporous SiO2 microspheres. CrystEngComm 15, 10043–10048. doi: 10.1039/c3ce41433g
    Zhang, L., Wang, W.Z., Sun, S.M., Xu, J.H., Shang, M., Ren, J., 2010. Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal. B Environ. 100, 97–101. doi: 10.1016/j.apcatb.2010.07.018
    Zhong, X., Royer, S., Zhang, H., Huang, Q.Q., Xiang, L.J., Valange, S., Barrault, J., 2011. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process. Sep. Purif. Technol. 80, 163–171. doi: 10.1016/j.seppur.2011.04.024
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (53) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint