Effect of Boron Compounds on Properties of Chinese Fir Wood Treated with PMUF Resin

Fei WANG Junliang LIU Wenhua LYU

Fei WANG, Junliang LIU, Wenhua LYU. Effect of Boron Compounds on Properties of Chinese Fir Wood Treated with PMUF Resin[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 60-66. doi: 10.21967/jbb.v4i1.182
Citation: Fei WANG, Junliang LIU, Wenhua LYU. Effect of Boron Compounds on Properties of Chinese Fir Wood Treated with PMUF Resin[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 60-66. doi: 10.21967/jbb.v4i1.182

doi: 10.21967/jbb.v4i1.182

Effect of Boron Compounds on Properties of Chinese Fir Wood Treated with PMUF Resin

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Progressive pressurized impregnation curve

    Figure  2.  Limiting oxygen index of the untreated and modified wood samples

    Figure  3.  The MOR and MOE of untreated and modified wood samples

    Figure  4.  Impact toughness of the untreated and modified wood samples

    Figure  5.  Water uptake of untreated and modified wood samples

    Figure  6.  Anti-swelling efficiency of untreated and modified wood samples

    Figure  7.  The XRD curves of untreated and modified wood samples

    Figure  8.  The FT-IR spectra of the untreated and modified wood samples

    Figure  9.  The SEM images of radial section of P30 and PB30 wood samples: (a) P30, (b) PB30, (c) and (d) magnification of PB30

    Table  1.   Physical properties of untreated and modified wood samples

    Sample PMUF (wt%) BA+BX (wt%) AD (%) WPG (%) Density (g/cm3)
    Untreated 0 0 - - 0.366±0.016
    BB 0 6 225.5±8.6 9.2±0.5 0.401±0.015
    P10 10 0 253.5±10.3 29.5±1.3 0.435±0.014
    P20 20 0 261.7±13.9 59.6±2.9 0.529±0.013
    P30 30 0 255.1±10.2 79.0±2.9 0.602±0.010
    PB10 10 6 259.2±11.3 37.2±1.6 0.467±0.010
    PB20 20 6 267.9±14.3 66.3±3.4 0.557±0.010
    PB30 30 6 253.2±11.7 88.3±3.7 0.643±0.017
    Notes: BA+BX is 2% boric acid + 4% borax; AD is absorption dose; WPG is weight percent gain; BB is boron compounds modified; P10, P20 and P30 are 10%, 20% and 30% solid content PMUF modified; PB10, PB20 and PB30 are 10%, 20% and 30% solid content PMUF with boron compounds modified. The same below.
    下载: 导出CSV
  • Baysal E, 2002. Determination of oxygen index levels and thermal analysis of scots Pine (Pinus sylvestris L.) impregnated with melamine formaldehyde-boron combinations. Journal of Fire Sciences, 20(5): 373–389. DOI: 10.1177/ 0734904102020005485.
    Cavdar A D, Mengeloğlu F, Karakus K, 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60: 6–12. DOI: 10.1016/j. measurement. 2014.09.078.
    Cave I D, 1997. Theory of X-ray measurement of microfibril angle in wood. Wood Science and Technology, 31(3): 143–152. DOI: 10.1007/BF00705881.
    Chai Y B, Liu J L, Zhao Y, et al., 2016. Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds. Industrial & Engineering Chemistry Research, 55(37): 9840–9850. DOI: 10.1021/acs. iecr.6b02156.
    Chen H Y, Miao X W, Feng Z F, et al., 2014. In situ polymerization of phenolic methylolurea in cell wall and induction of pulse-pressure impregnation on green wood. Industrial & Engineering Chemistry Research, 53(23): 9721–9727. DOI: 10.1021/ie5006349.
    Deka M, Saikia C N, 2000. Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresource Technology, 73(2): 179–181. DOI: 10.1016/s0960-8524(99)00167-4.
    Deka M, Saikia C N, Baruah K K, 2002. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technology, 84(2): 151–157. DOI: 10.1016/s0960-8524(02)00016-0.
    Furuno T, Imamura Y, Kajita H, 2004. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology, 37(5): 349–361. DOI: 10.1007/s00226-003-0176-6.
    Gao M, Zhu K, Sun Y J, et al., 2004. Thermal degradation of wood treated with amino resins and amino resins modified with phosphate in nitrogen. Journal of Fire Sciences, 22(6): 505–515. DOI: 10.1177/0734904104043031.
    Hazarika A, Maji T K, 2013. Synergistic effect of nano-TiO2 and nanoclay on the ultraviolet degradation and physical properties of wood polymer nanocomposites. Industrial & Engineering Chemistry Research, 52(38): 13536–13546. DOI: 10.1021/ie401596h.
    Hazarika A, Maji T K, 2014. Properties of softwood polymer composites impregnated with nanoparticles and melamine formaldehyde furfuryl alcohol copolymer. Polymer Engineering & Science, 54(5): 1019–1029. DOI: 10.1002/pen.23643.
    Islam M S, Hamdan S, Jusoh I, et al., 2011. Dimensional stability and dynamic young's modulus of tropical light hardwood chemically treated with methyl methacrylate in combination with hexamethylene diisocyanate cross-linker. Industrial & Engineering Chemistry Research, 50(7): 3900– 3906. DOI: 10.1021/ie1021859.
    Jiang J X, Li J Z, Hu J, et al., 2010. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials, 24(12): 2633–2637. DOI: 10.1016/j.conbuildmat.2010.04.064.
    Jiang T, Feng X H, Wang Q W, et al., 2014. Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant. Construction and Building Materials, 72: 1–6. DOI: 10.1016/ j.conbuildmat.2014.09.004.
    Kizilcan N, Dinçer P, 2013. In situ modification of cyclohexanone formaldehyde resin with boric acid for high-performance applications. Journal of Applied Polymer Science, 129(5): 2813–2820. DOI: 10.1002/app.38951.
    Lang Q, Bi Z, Pu J W, 2015. Poplar wood-methylol urea composites prepared by in situ polymerization. II. Characterization of the mechanism of wood mod ification by methylol urea. Journal of Applied Polymer Science, 132(41): 42406 DOI: 10.1002/app.42406.
    Leemon N F, Ashaari Z, Uyup M K A, et al., 2015. Characterisation of phenolic resin and nanoclay admixture and its effect on impreg wood. Wood Science and Technology, 49(6): 1209–1224. DOI: 10.1007/s00226-015-0754-4.
    Lin Q J, Chen N R, Bian L P, et al., 2012. Development and mechanism characterization of high performance soy-based bio-adhesives. International Journal of Adhesion and Adhesives, 34: 11–16. DOI: 10.1016/j.ijadhadh.2012.01.005.
    Liu R, Cao J Z, Xu W Y, et al., 2012. Study on the anti-leaching property of Chinese fir treated with borate modified by phenol- formaldehyde resin. Wood Research, 57(1): 111–120. DOI: 10.1080/02773813.2012.659320.
    Lopes D B, Mai C, Militz H, 2015. Mechanical properties of chemically modified portuguese pinewood. Maderas Ciencia Y Tecnologia, 17(1): 179–194. DOI: 10.4067/s0718- 221x2015005000018.
    Pandey K K, 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71: 1969–1975. DOI: 10.1002/(SICI)1097-4628(19990321)71:12 < 1969::AID-APP6 > 3.0.CO; 2-D.
    Tomak E D, Cavdar A D, 2013. Limited oxygen index levels of impregnated Scots pine wood. Thermochimica Acta, 573: 181–185. DOI: 10.1016/j.tca.2013.09.022.
    Wang J G, Jiang N, Jiang H Y, 2010. Micro-structural evolution of phenol-formaldehyde resin modified by boron carbide at elevated temperatures. Materials Chemistry and Physics, 120(1): 187–192. DOI: 10.1016/j.matchemphys.2009.10.044.
    Xie Y, Krause A, Mai C, et al., 2005. Weathering of wood modified with the N-methylol compound 1, 3-dimethylol- 4, 5-dihydroxyethyleneurea. Polymer Degradation and Stability, 89(2): 189–199. DOI: 10.1016/j.polymdegradstab.2004. 08.017.
    Xie Y J, Krause A, Militz H, et al., 2007. Effect of treatments with 1, 3-dimethylol-4, 5-dihydroxy-ethyleneurea (DMDHEU) on the tensile properties of wood. Holzforschung, 61(1): 43–50. DOI: 10.1515/hf.2007.008.
    Yan Y T, Dong Y M, Li J Z, et al., 2015. Enhancement of mechanical and thermal properties of Poplar through the treatment of glyoxal-urea/nano-SiO2. RSC Advances, 5(67): 54148–54155. DOI: 10.1039/c5ra07294h.
    Zhang M, Xu Y, Wang S L, et al., 2013. Improvement of wood properties by composite of diatomite and "phenol-melamine- formaldehyde" co-condensed resin. Journal of Forestry Research, 24(4): 741–746. DOI: 10.1007/s11676-013-0413-2.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  353
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-20
  • 录用日期:  2018-12-11
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回