Effects of Bamboo Fiber Length and Loading on Mechanical, Thermal and Pulverization Properties of Phenolic Foam Composites

Qiheng TANG Lu FANG Wenjing GUO

Qiheng TANG, Lu FANG, Wenjing GUO. Effects of Bamboo Fiber Length and Loading on Mechanical, Thermal and Pulverization Properties of Phenolic Foam Composites[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 51-59. doi: 10.21967/jbb.v4i1.184
Citation: Qiheng TANG, Lu FANG, Wenjing GUO. Effects of Bamboo Fiber Length and Loading on Mechanical, Thermal and Pulverization Properties of Phenolic Foam Composites[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 51-59. doi: 10.21967/jbb.v4i1.184

doi: 10.21967/jbb.v4i1.184

Effects of Bamboo Fiber Length and Loading on Mechanical, Thermal and Pulverization Properties of Phenolic Foam Composites

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Macro photographs and SEM images of 1#(a, c) and 2# (b, d) bamboo fibers

    Figure  2.  Viscosity of the phenolic resin with respect to bamboo fiber content

    Figure  3.  Variation of mechanical strength for different bamboo fiber loadings

    Figure  4.  Macro photos and micrographs of pristine PF and composites

    Note: a1 is pristine PF; b1–b4 are 1.5%1#/PF–5.0%1#PF; c1–c4 are 1.5%/2#PF–5.0%#PF. The same below.

    Figure  5.  Mean cell size and size distribution of pristine PF and composites

    Figure  6.  Micrographs of 2#PF5.0%

    Figure  7.  Thermal stability of pristine foam, bamboo fibers and the foam composites

    Figure  8.  Variation of pulverization ratio for different fiber loadings

    Figure  9.  Variation of limiting oxygen index (LOI) for different fiber contents

    Table  1.   Compositions and characterizations of pristine foam and composites

    Sample designation Foaming phenolic resin (g) Bamboo fibers mass fraction (%) Tween-80 (g) Catalyst (g) Foaming temperature (℃) Actual density (g/cm3)
    Pristine PF 100 0 0.3 10 60 0.030
    1.5%/PF1# 100 1.5 0.3 10 60 0.031
    2.5%/PF1# 100 2.5 0.3 10 80 0.033
    3.5%/PF1# 100 3.5 0.3 10 100 0.031
    5.0%/PF1# 100 5.0 0.3 10 110 0.029
    1.5%/PF2# 100 1.5 0.3 10 60 0.030
    2.5%/PF2# 100 2.5 0.3 10 80 0.028
    3.5%/PF2# 100 3.5 0.3 10 110 0.029
    5.0%/PF2# 100 5.0 0.3 10 120 0.031
    下载: 导出CSV

    Table  2.   Thermal decomposition data of pristine foam, bamboo fibers and the foam composites

    Sample designation T5% (℃) Residual yield at
    600℃ (%)
    Bamboo fiber 268 21.1
    Pristine PF 205 67.6
    1.5%/PF1# 208 68.3
    2.5%/PF1# 213 65.9
    3.5%/PF1# 216 65.6
    5.0%/PF1# 219 65.0
    1.5%/PF2# 215 67.1
    2.5%/PF2# 216 65.2
    3.5%/PF2# 217 64.9
    5.0%/PF2# 214 64.4
    Note: T5% is defined as the sample temperature at 5% weight loss.
    下载: 导出CSV
  • Bo C Y, Wei S K, Hu L H, et al., 2016. Synthesis of a cardanol-based phosphorus-containing polyurethane prepolymer and its application in phenolic foams. RSC Advances, 6(67): 62999–63005. DOI: 10.1039/c6ra08249a.
    Choe J, Kim M, Kim J, et al., 2016. A microwave foaming method for fabricating glass fiber reinforced phenolic foam. Composite Structures, 152: 239–246. DOI: 10.1016/j.compstruct.2016.05.044.
    del Saz-orozco B, Oliet M, Alonso M V, et al., 2012. Formulation optimization of unreinforced and lignin nanoparticle- reinforced phenolic foams using an analysis of variance approach. Composites Science and Technology, 72(6): 667–674. DOI: 10.1016/j.compscitech.2012.01.013.
    del Saz-orozco B, Alonso M V, Oliet M, et al., 2014. Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams. Composites Part B: Engineering, 56: 546–552. DOI: 10.1016/j.compositesb.2013.08.078.
    del Saz-orozco B, Alonso M V, Oliet M, et al., 2015. Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Composites Part B: Engineering, 75: 367–372. DOI: 10.1016/j.compositesb.2015.01. 049.
    Ikeda R, Tanaka H, Uyama H, et al., 2002. Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid. Polymer, 43(12): 3475–3481. DOI: 10.1016/ S0032-3861(02)00062-9.
    Lee S H, Wang S Q, 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1): 80–91. DOI: 10.1016/j.compositesa.2005.04.015.
    Li Q L, Chen L, Zhang J J, et al., 2015. Enhanced mechanical properties, thermal stability of phenolic-formaldehyde foam/ silica nanocomposites via in situ polymerization. Polymer Engineering & Science, 55(12): 2783–2793. DOI: 10.1002/ pen.24169.
    Li Q L, Chen L, Li X H, et al., 2016. Effect of multi- walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization. Composites Part A: Applied Science and Manufacturing, 82: 214–225. DOI: 10.1016/j.compositesa.2015.11.014.
    Li Z Q, Jiang Z H, Fei B, H et al., 2014. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresource Technology, 151: 91–99. DOI: 10.1016/j.biortech. 2013.10.060.
    Liu L, Fu M T, Wang Z Z, 2015. Synthesis of boron-containing toughening agents and their application in phenolic foams. Industrial & Engineering Chemistry Research, 54(7): 1962–1970. DOI: 10.1021/ie504851y.
    Nahar S, Khan R A, Dey K, et al., 2012. Comparative studies of mechanical and interfacial properties between jute and bamboo fiber-reinforced polypropylene-based composites. Journal of Thermoplastic Composite Materials, 25(1): 15–32. DOI: 10.1177/0892705711404725.
    Parameswaran P S, Bhuvaneswary M G, Thachil E T, 2009. Control of microvoids in resol phenolic resin using unsaturated polyester. Journal of Applied Polymer Science, 113(2): 802–810. DOI: 10.1002/app.29667.
    Song S A, Chung Y S, Kim S S, 2014. The mechanical and thermal characteristics of phenolic foams reinforced with carbon nanoparticles. Composites Science and Technology, 103: 85–93. DOI: 10.1016/j.compscitech.2014.08. 013.
    Sukmawan R, Takagi H, Nakagaito A N, 2016. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 84: 9–16. DOI: 10.1016/j.compositesb.2015.08.072.
    Yang C, Zhuang Z H, Yang Z G, 2014. Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam. Journal of Applied Polymer Science, 131(1): 39734. DOI: 10.1002/app.39734.
    Yang Y F, He J M, 2015. Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer. Polymer Composites, 36(9): 1584–1589. DOI: 10.1002/pc.23066.
    Yang H Y, Wang X, Yu B, et al., 2013. A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. Journal of Applied Polymer Science, 128(5): 2720–2728. DOI: 10.1002/app.38399.
    Yang J N, Li P, 2015. Characterization of short glass fiber reinforced polypropylene foam composites with the effect of compatibilizers: A comparison. Journal of Reinforced Plastics and Composites, 34(7): 534–546. DOI: 10.1177/ 0731684415574142.
    Yang Z J, Yuan L L, Gu Y Z, et al., 2013. Improvement in mechanical and thermal properties of phenolic foam reinforced with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 130(3): 1479–1488. DOI: 10.1002/app. 39326.
    Yu Y, Wang H K, Lu F et al., 2014. Bamboo fibers for composite applications: a mechanical and morphological investigation. Journal of Materials Science, 49(6): 2559–2566. DOI: 10.1007/s10853-013-7951-z.
    Yuan H X, Xing W Y, Yang H Y, et al., 2013. Mechanical and thermal properties of phenolic/glass fiber foam modified with phosphorus-containing polyurethane prepolymer. Polymer International, 62(2): 273–279. DOI: 10.1002/pi.4296.
    Zhou J T, Yao Z J, Chen Y X, et al., 2013. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat. Materials & Design, 51: 131–135. DOI: 10.1016/j.matdes. 2013.04.030.
    Zhou J T, Yao Z J, Chen Y X, et al., 2014. Fabrication and mechanical properties of phenolic foam reinforced with graphene oxide. Polymer Composites, 35(3): 581–586. DOI: 10.1002/pc.22698.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  297
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 录用日期:  2018-11-20
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回