[1] Ando, K., Onda, H., 1999. Mechanism for deformation of wood as a honeycomb structure I:effect of anatomy on the initial deformation process during radial compression. J. Wood Sci. 45, 120-126. doi: 10.1007/BF01192328
[2] Bao, M.Z., Huang, X.N., Jiang, M.L., Yu, W.J., Yu, Y.L., 2017. Effect of thermo-hydro-mechanical densification on microstructure and proper ties of poplar wood (Populus tomentosa). J. Wood Sci. 63, 591-605. doi: 10.1007/s10086-017-1661-0
[3] Bodig, J., 1963. The peculiarity of compression of conifers in radial direction. Forest Products J. 13, 438.
[4] Bodig, J., 1965. The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Products J. 15, 197-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1545968307309473
[5] Bodig, J., 1966. Stress-strain relationship for wood in transverse compression. J. of Mater. Sci. 1, 645-666. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2258cfe8d258cb66d2fd58e7bd4c98c
[6] Chu, D.M., Mu, J., Avramidis, S., Rahimi, S., Liu, S.Q., Lai, Z.Y., 2019. Functionalized surface layer on poplar wood fabricated by fire retar dant and thermal densification. Part 1:compression recovery and flammability. Forests 10, 955. http://www.researchgate.net/publication/336852149_Functionalized_Surface_Layer_on_Poplar_Wood_Fabricated_by_Fire_Retardant_and_Thermal_Densification_Part_1_Compression_Recovery_and_Flammability
[7] Dai, C., Steiner, P.R., 1993. Compression behavior of randomly formed wood flake mats. Wood Fiber Sci. 25, 349-358. http://agris.fao.org/agris-search/search.do?recordID=US9429727
[8] Deben research, 2003. Deben UK Limited, Edmunds, Suffolk, U.K.
[9] Easterling, K.E., Harrysson, R., Gibson, L.J., Ashby, M.F., 1982. On the mechanics of Balsa and other woods. Proc. R. Soc. Lond. A 383, 31-41. doi: 10.1098/rspa.1982.0118
[10] Ellis, S., Steiner, P., 2002. The behaviour of five wood species in compression. IAWA J. 23, 201-211. doi: 10.1163/22941932-90000298
[11] Gibson, L.J., Ashby, M.F., 1988. Cellular solids:structure and properties. New York, USA:Pergamon Press, 357.
[12] Gong, M., Lamason, C., Li, L., 2010. Interactive effect of surface densification and post-heat-treatment on aspen wood. J. Mater. Process. Tec h nol. 210, 293-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00b8a4bd632268b544a828ca98c608dd
[13] Gong, M., Nakatani, M., Yang, Y., Afzal, M., 2006. Maximum compression ratios of softwoods produced in Eastern Canada. In: Proceedings of the 9th Wood Conference on Timber Engineering. Aug. 2006, Portland, OR, USA.
[14] Greenspan, L., 1977. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bureau Stand. Sect. A:Phys. Chem. 81A, 89. http://ci.nii.ac.jp/naid/80014765971
[15] Huang, C., Gong, M., Chui, Y.H., Chan, F., 2020. Mechanical behaviour of wood compressed in radial direction. Part I. New method of deter mining the yield stress of wood on the stress-strain curve. J. Bioresour. Bioprod. 5, 186-195. http://www.sciencedirect.com/science/article/pii/S2369969820300967
[16] Iida, L., Norimoto, M., Yamada, I., 1984. Hygrothermal recovery of compression set. Mokuzai Gakkaishi 30, 354-358. http://agris.fao.org/agris-search/search.do?recordID=JP19850003009
[17] Inoue, M., Norimoto, M., Otsuka, Y., Yamada, T., 1990. Surface compression of coniferous wood lumber I. A new technique to compress the surface layer. J. Jpn. Wood Res. Soc. 36, 969-975.
[18] Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M., 2007. Steam or heat fixation of compressed wood. Wood Fiber Sci. 25, 224-235. http://europepmc.org/abstract/AGR/IND93050918
[19] Inoue, M., Sekino, N., Morooka, T., Norimoto, M., 1996. Dimensional stabilization of wood composites by steaming I. Fixation of compressed wood by pre-streaming. In:Proceedings of the Third Pacific Rim Bio-based Composites Symposium, Kyoto, Japan, 240-248. http://ci.nii.ac.jp/naid/10018325101
[20] Irvine, G.M., 1984. Glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi Journal 67, 118-121. http://www.researchgate.net/publication/279901388_GLASS_TRANSITIONS_OF_LIGNIN_AND_HEMICELLULOSE_AND_THEIR_MEASUREMENT_BY_DIFFERENTIAL_THERMAL_ANALYSIS
[21] Kamke, F.A., Casey, L.J., 1988. Fundamentals of flakeboard manufacture:internal-mat conditions. For. Prod. J. 38, 38-44. http://europepmc.org/abstract/AGR/IND88021827
[22] Kawai, S., Wang, Q., Sasaki, H., Tanahashi, M., 1992. Production of compressed laminated veneer lumber by steam pressing. In:Proceedings of the Third Pacific Rim Bio-based Composites Symposium, Kyoto, Japan, 121-128. http://europepmc.org/abstract/AGR/IND93033554
[23] Kelley, S.S., Rials, T.G., Glasser, W.G., 1987. Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22, 617-624. doi: 10.1007/BF01160778
[24] Kiaei, M., Behzadi Rad, M., Amani, N., 2018. Influence of densification temperature on some physical and mechanical properties of Pteroca rya fraxinifolia wood. Drvna Ind. 69, 283-287. doi: 10.5552/drind.2018.1750
[25] Kollmann, F.F.P., Càté, W.A. Jr, 1968. Principles of wood science and technology. Berlin, Heidelberg:Springer Berlin Heidelberg.
[26] Kubovskë, I., Kačíková, D., Kačík, F., 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12, 485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000230652
[27] Lamason, C., Gong, M., 2007. Optimization of pressing parameters for mechanically surface-densified aspen. For. Prod. J. 57, 64-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a57e5cd4ab6e57d4c82687a4824416
[28] Lenth, C.A., Kamke, F.A., 2001. Moisture dependent softening behavior of wood. Wood and Fiber Science 33, 492-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b56d4746c44408dc88a663c121b74fc
[29] Mania, P., Wróblewski, M., Wójciak, A., Roszyk, E., Moliński, W., 2020. Hardness of densified wood in relation to changed chemical composi tion. Forests 11, 506. http://www.researchgate.net/publication/341121023_Hardness_of_Densified_Wood_in_Relation_to_Changed_Chemical_Composition
[30] Norimoto, M., 1993. Large compressive deformation in wood. Mokuzai Gakkaishi 39, 867-874.
[31] Panshin, A., de Zeeuw, C., 1980. Textbook of wood technology. New York:McGraw-Hill Inc.
[32] Pelit, H., Yorulmaz, R., 2019. Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood. BioResour ces 14, 9739-9754.
[33] Skyba, O., Schwarze, F., Niemz, P., 2009. Physical and mechanical properties of thermos-hygro-mechanically (THM)-densified wood. Wood Research 54, 1-18.
[34] S zbir, G.D., Bektas, I., Ak, A.K., 2019. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas, Cienc. Tecnol., 21, 481-492.
[35] Tabarsa, T., Chui, Y.H., 2000. Stress-strain response of wood under radial compression. Part I. Test method and influences of cellular properties. Wood Fiber Sci. 32, 144-152. http://www.cabdirect.org/abstracts/20000610039.html
[36] Tabarsa, T., Chui, Y.H., 2001. Characterizing microscopic behavior of wood under transverse compression. Part II. Effect of species and load ing direction. Wood and Fiber Science 33, 223-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a50ed3e8021d59d3e30b5908406a2385
[37] Wang, S.Q., Winistorfer, P.M., 2000. Fundamentals of vertical density profile formation in wood composites. Part II. Methodology of vertical density formation under dynamic conditions. Wood and Fiber Science 32, 220-238.
[38] Wolcott, M., Kasal, B., Kamke, F., Dillard, D., 1989. Testing small wood specimens in transverse compression. Wood and Fiber Science 21, 320-329.
[39] Wolcott, M.P., Kamke, F.A., Dillard, D.A., 1990. Fundamentals of flakeboard manufacture:viscoelastic behavior of the wood component. Wood Fiber Sci. 22, 345-361.
[40] Wolcott, P., Kamke, F., Dillard, D., 1994. Fundamentals aspects of wood deformation pertaining to manufacture of wood-based composites. Wood Fiber Sci. 26, 496-511.