[1] Adams K, González A F, Mallows J, et al., 2019. Facile synthesis and characterization of Bi13S18I2 films as a stable supercapacitor electrode material. Journal of Materials Chemistry A, 7(4):1638-1646. DOI: 10.1039/c8ta11029h.
[2] Aguirre J C, Ferreira A, Ding H, et al., 2014. Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM). The Journal of Physical Chemistry C, 118(34):19505-19523. DOI: 10.1021/jp501047j.
[3] Bora C, Sharma J, Dolui S, 2014. Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor. The Journal of Physical Chemistry C, 118(51):29688-29694. DOI: 10.1021/jp511095s.
[4] Bundles R G, Datablade C, Web D D F, 2006. Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films, Electrochimica Acta, 51:1695-1703. doi: 10.1016/j.electacta.2005.02.150
[5] Chen G Z, 2013. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science:Materials International, 23(3):245-255. DOI: 10.1016/j.pnsc.2013.04.001.
[6] Chen M D, Wumaie T, Li W L, et al., 2015. Electrochemical performance of cotton stalk based activated carbon electrodes modified by MnO2 for supercapacitor. Materials Technology, 30(Supp. 1):A2-A7. DOI: 10.1179/1753555714y.0000000241.
[7] Chen T, Dai L M, 2013. Carbon nanomaterials for high-performance supercapacitors. Materials Today, 16(7/8):272-280. DOI: 10.1016/j.mattod.2013.07.002.
[8] Kim M H, Kim K B, Park S M, et al., 2016. Hierarchically structured activated carbon for ultracapacitors. Scientific Reports, 6:21182. DOI: 10.1038/srep21182.
[9] Ko Y N, Kang Y C, Park S B, 2014. Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration. Nanoscale, 6(9):4508. DOI: 10.1039/c4nr00064a.
[10] Lee J S M, Briggs M E, Hu C C, et al., 2018. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy, 46:277-289. DOI: 10.1016/j.nanoen.2018.01.042.
[11] Li H L, Yu K, Tang Z, et al., 2016. High photocatalytic performance of a type-Ⅱ α-MoO3@MoS2 heterojunction:from theory to experiment. Physical Chemistry Chemical Physics, 18(20):14074-14085. DOI: 10.1039/c6cp02027e.
[12] Li Z P, Mi Y J, Liu X H, et al., 2011. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. Journal of Materials Chemistry, 21(38):14706. DOI: 10.1039/c1jm11941a.
[13] Ma X M, Zhou W Q, Mo D Z, et al., 2015. Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochimica Acta, 176:1302-1312. DOI:10.1016/j. electacta.2015.07.148.
[14] Pan Q C, Huang Y G, Wang H Q, et al., 2016. MoS2/C nanosheets Encapsulated Sn@SnOx nanoparticles as high-performance Lithium-iom battery anode material. Electrochimica Acta, 197:50-57. DOI: 10.1016/j.electacta.2016.03.051.
[15] Pan Q C, Zheng F H, Ou X, et al., 2017. MoS2 decorated Fe3O4/Fe1-xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustainable Chemistry & Engineering, 5(6):4739-4745. DOI: 10.1021/acssuschemeng.7b00119.
[16] Ranganatha S, Munichandraiah N, 2018. Γ-MnS nanoparticles anchored reduced graphene oxide:Electrode materials for high performance supercapacitors. Journal of Science:Advanced Materials and Devices, 3(3):359-365. DOI: 10.1016/j.jsamd.2018.07.001.
[17] Sharma R K, Rastogi A C, Desu S B, 2008. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochimica Acta, 53(26):7690-7695. DOI: 10.1016/j.electacta.2008.04.028.
[18] Shi X M, Zhou W P, Ma D L, et al., 2015. Electrospinning of nanofibers and their applications for energy devices. Journal of Nanomaterials, 2015:1-20. DOI: 10.1155/2015/140716.
[19] Spaldin N A, Fiebig M, Mostovoy M, 2008. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. Journal of Physics:Condensed Matter, 20(43):434203. DOI: 10.1088/0953-8984/20/43/434203.
[20] Su Z K, Cui Y H, Tang X H, et al., 2008. Fabrication of alternate stacking MnO2/MoS2 layered nanohybrid by a sonochemistry technology. Chinese Journal of Chemistry, 26(3):575-577. DOI: 10.1002/cjoc.200890108.
[21] Wang Y G, Song Y F, Xia Y Y, 2016. Electrochemical capacitors:mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21):5925-5950. DOI: 10.1039/c5cs00580a.
[22] Wang Z H, Tammela P, Zhang P, et al., 2014. High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. Journal of Materials Chemistry A, 2(39):16761-16769. DOI: 10.1039/c4ta03724c.
[23] Xu W B, Mu B, Wang A Q, 2018. All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science, 53(16):11659-11670. DOI: 10.1007/s10853-018-2418-x.
[24] Yang X, Niu H, Jiang H, et al., 2016. A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. Journal of Materials Chemistry A, 4(29):11264-11275. DOI: 10.1039/c6ta03474h.
[25] Yao W, Zhou H, Lu Y, 2013. Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. Journal of Power Sources, 241:359-366. DOI: 10.1016/j.jpowsour.2013.04.142.
[26] Yu G H, Hu L B, Liu N, et al., 2011. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Letters, 11(10):4438-4442. DOI: 10.1021/nl2026635.
[27] Yuan L X, Wang Z H, Zhang W X, et al., 2011. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science, 4(2):269-284. DOI: 10.1039/c0ee00029a.