[1] Biehl P, von der Lühe M, Dutz S, et al. 2018. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers, 10(1):91. DOI: 10.3390/polym10010091.
[2] Coady D J, Ong Z Y, Lee P S, et al. 2014. Enhancement of cationic antimicrobial materials via cholesterol incorporation. Advanced Healthcare Materials, 3(6):882-889. DOI: 10.1002/adhm.201300554.
[3] Cockerill F R. 2013. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement. U. S.: Clinical and Laboratory Standards Institute.
[4] Costerton J W. 1999. Bacterial biofilms:a common cause of persistent infections. Science, 284(5418):1318-1322. DOI: 10.1126/science.284.5418.1318
[5] Dai T J, Wang C P, Wang Y Q, et al. 2018. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 10(17):15163-15173. DOI: 10.1021/acsami.8b02527.
[6] Ding X, Yang C, Lim T P, et al. 2012. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials, 33(28):6593-6603. DOI:10.1016/j.biomaterials.2012. 06.001.
[7] Downey J S, Frank R S, Li W H, et al. 1999. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization. Macromolecules, 32(9):2838-2844. DOI: 10.1021/ma9812027.
[8] Glass P, Chung H, Washburn N R, et al. 2009. Enhanced reversible adhesion of dopamine methacrylamide-coated, elastomer microfibrillar structures under wet conditions. Langmuir, 25(12):6607-6612. DOI: 10.1021/la9009114.
[9] Hendriks J G E, van Horn J R, van der Mei H C, et al. 2004. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials, 25(3):545-556. DOI: 10.1016/s0142-9612(03)00554-4.
[10] Laekeman G M, van Hoof L, Haemers A, et al. 1990. Eugenol a valuable compound forin vitro experimental research and worthwhile for furtherin vivo investigation. Phytotherapy Research, 4(3):90-96. DOI: 10.1002/ptr.2650040304.
[11] Lam S J, Wong E H H, Boyer C, et al. 2018. Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 76:40-64. DOI: 10.1016/j.progpolymsci.2017.07.007.
[12] Le Ouay B, Stellacci F. 2015. Antibacterial activity of silver nanoparticles:A surface science insight. Nano Today, 10(3):339-354. DOI: 10.1016/j.nantod.2015.04.002.
[13] Lee H, Dellatore S M, Miller W M, et al. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849):426-430. DOI: 10.1126/science.1147241.
[14] Letícia Braz A, Ahmed I. 2017. Manufacturing processes for polymeric micro and nanoparticles and their biomedical applications. AIMS Bioengineering, 4(1):46-72. DOI: 10.3934/bioeng.2017.1.46.
[15] Li F, Weir M D, Xu H H K. 2013. Effects of quaternary ammonium chain length on antibacterial bonding agents. Journal of Dental Research, 92(10):932-938. DOI: 10.1177/0022034513502053.
[16] Lowe A B, McCormick C L. 2002. Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 102(11):4177-4190. DOI: 10.1021/cr020371t.
[17] Nguyen T K, Lam S J, Ho K K K, et al. 2017. Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria. ACS Infectious Diseases, 3(3):237-248. DOI: 10.1021/acsinfecdis.6b00203.
[18] Rinaudo M. 2007. Chitin and chitosan:properties and applications. ChemInform, 38(27):603-632. DOI: 10.1002/chin.200727270.
[19] Rojo L, Vazquez B, Parra J, et al. 2006. From natural products to polymeric derivatives of "eugenol":a new approach for preparation of dental composites and orthopedic bone cements. Biomacromolecules, 7(10):2751-2761. DOI: 10.1021/bm0603241.
[20] Shalumon K T, Sheu C, Chen C, et al. 2018. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation. Acta Biomaterialia, 72:121-136. DOI: 10.1016/j.actbio.2018.03.044.
[21] Wang R B, Wang L, Zhou L Z, et al. 2012. The effect of a branched architecture on the antimicrobial activity of poly (sulfone amines) and poly(sulfone amine)/silver nanocomposites. Journal of Materials Chemistry, 22(30):15227. DOI: 10.1039/c2jm00122e.
[22] Yang J, Khan M, Zhang L, et al. 2015. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. Journal of Materials Chemistry B, 3(39):7682-7697. DOI: 10.1039/c5tb01155h.
[23] Yuan Y Q, Liu F, Xue L L, et al. 2016. Recyclable Escherichia coli-specific-killing AuNP-Polymer (ESKAP) nanocomposites. ACS Applied Materials & Interfaces, 8(18):11309-11317. DOI: 10.1021/acsami.6b02074.
[24] Zhao Y H, Wu Y, Wang L, et al. 2017. Bio-inspired reversible underwater adhesive. Nature Communications, 8:2218. DOI: 10.1038/s41467-017-02387-2.