[1] Aljohani, W. , Ullah, M. W. , Zhang, X. L. , Yang, G. , 2018. Bioprinting and its applications in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 107, 261-275. doi: 10.1016/j.ijbiomac.2017.08.171
[2] Chen, X. L. , Huang, L. , Sun, H. J. , Cheng, S. Z. D. , Zhu, M. Q. , Yang, G. , 2014. Stimuli-responsive nanocomposite: potential injectable embolization agent. Macromol. Rapid Commun. 35, 579-584. doi: 10.1002/marc.201300720
[3] Di, Z. , Shi, Z. J. , Ullah, M. W. , Li, S. X. , Yang, G. , 2017. A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int. J. Biol. Macromol. 105, 638-644. doi: 10.1016/j.ijbiomac.2017.07.075
[4] Gebre-Mariam, T. , Neubert, R. , Schmidt, P. C. , Wutzler, P. , Schmidtke, M. , 2006. Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders. J. Ethnopharmacol. 104, 182-187. doi: 10.1016/j.jep.2005.08.071
[5] Geisel, N. , Clasohm, J. , Shi, X. D. , Lamboni, L. , Yang, J. C. , Mattern, K. , Yang, G. , Schäfer, K. H. , Saumer, M. , 2016. Microstructured multilevel bacterial cellulose allows the guided growth of neural stem cells. Small 12, 5407-5413. doi: 10.1002/smll.201601679
[6] Giday, M. , Asfaw, Z. , Elmqvist, T. , Woldu, Z. , 2003. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol. 85, 43-52. doi: 10.1016/S0378-8741(02)00359-8
[7] Ibrar, M. , Ullah, M. W. , Manan, S. , Farooq, U. , Rafiq, M. , Hasan, F. , 2020. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 104, 2777-2801. doi: 10.1007/s00253-020-10399-0
[8] Islam, M. U. , Ullah, M. W. , Khan. S. , Shah, N. , Park, J. K. , 2017. Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166-1173. doi: 10.1016/j.ijbiomac.2017.04.110
[9] Kamal, T. , Ahmad, I. , Khan, S. B. , Asiri, A. M. , 2019a. Anionic polysaccharide stabilized nickel nanoparticles-coated bacterial cellulose as a highly efficient dip-catalyst for pollutants reduction. React. Funct. Polym. 145, 104395. doi: 10.1016/j.reactfunctpolym.2019.104395
[10] Kamal, T. , Ahmad, I. , Khan, S. B. , Asiri, A. M. , 2019b. Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 135, 1162-1170. doi: 10.1016/j.ijbiomac.2019.05.057
[11] Kamal, T. , Ahmad, I. , Khan, S. B. , Ul-Islam, M. , Asiri, A. M. , 2019c. Microwave assisted synthesis and carboxymethyl cellulose stabilized copper nanoparticles on bacterial cellulose nanofibers support for pollutants degradation. J. Polym. Environ. 27, 2867-2877. doi: 10.1007/s10924-019-01565-1
[12] Khan, S. , Ul-Islam, M. , Ikram, M. , Ullah, M. W. , Israr, M. , Subhan, F. , Kim, Y. , Jang, J. H. , Yoon, S. , Park, J. K. , 2016. Three-dimensionally microporous and highly biocompatible bacterial cellulose-gelatin composite scaffolds for tissue engineering applications. RSC Adv. 6, 110840-110849. doi: 10.1039/C6RA18847H
[13] Khan, S. , Ul-Islam, M. , Khattak, W. A. , Ullah, M. W. , Park, J. K. , 2015a. Bacterial cellulose-poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr. Polym. 127, 86-93. doi: 10.1016/j.carbpol.2015.03.055
[14] Khan, S. , Ul-Islam, M. , Khattak, W. A. , Ullah, M. W. , Park, J. K. , 2015b. Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22, 565-579. doi: 10.1007/s10570-014-0528-4
[15] Kim, Y. , Ullah, M. W. , Ul-Islam, M. , Khan, S. , Jang, J. H. , Park, J. K. , 2019. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 142, 135-144. doi: 10.1016/j.bej.2018.11.017
[16] Klemm, D. , Schumann, D. , Udhardt, U. , Marsch, S. , 2001. Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603. doi: 10.1016/S0079-6700(01)00021-1
[17] Lamboni, L. , Xu, C. , Clasohm, J. , Yang, J. C. , Saumer, M. , Schäfer, K. H. , Yang, G. , 2019. Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. Mater. Sci. Eng. : C 102, 502-510. doi: 10.1016/j.msec.2019.04.043
[18] Li, S. , Jasim, A. , Zhao, W. , 2018. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf. 41-49.
[19] Li, S. H. , Huang, D. K. , Zhang, B. Y. , Xu, X. B. , Wang, M. K. , Yang G. , Shen, Y. , 2014. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 4, 1301655. doi: 10.1002/aenm.201301655
[20] Liu, T. L. , Miao, J. C. , Sheng, W. H. , Xie, Y. F. , Huang, Q. , Shan, Y. B. , Yang, J. C. , 2010. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B 11, 10-16. doi: 10.1631/jzus.B0900163
[21] McCarthy, R. R. , Ullah, M. W. , Booth, P. , Pei, E. , Yang, G. , 2019. The use of bacterial polysaccharides in bioprinting. Biotechnol. Adv. 37, 107448. doi: 10.1016/j.biotechadv.2019.107448
[22] Mekonnen, A. , Atlabachew, M. , Kassie, B. , 2018. Investigation of antioxidant and antimicrobial activities of Euclea schimperi leaf extracts. Chem. Biol. Technol. Agric. 5, 16. doi: 10.1186/s40538-018-0128-x
[23] Mogoşanu, G. D. , Grumezescu, A. M. , 2014. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463, 127-136. doi: 10.1016/j.ijpharm.2013.12.015
[24] Nwachukwu, C. U. , Umeh, C. N. , Kalu, I. G. , Okere S. , Nwoko, M. C. , 2010. Identification and traditional uses of some common medicinal plants in Ezinihitte Mbaise L. G. A. , of Imo State, Nigeria. Rep. Opin. 2, 1-8.
[25] Shah, N. , Ul-Islam, M. , Khattak, W. A. , Park, J. K. , 2013. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98, 1585-1598. doi: 10.1016/j.carbpol.2013.08.018
[26] Shi, Z. J. , Zhang, Y. , Phillips, G. O. , Yang, G. , 2014. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539-545. doi: 10.1016/j.foodhyd.2013.07.012
[27] Shoukat, A. , Wahid, F. , Khan, T. , 2019. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol. 129, 965-971. doi: 10.1016/j.ijbiomac.2019.02.032
[28] Tang, W. H. , Jia, S. R. , Jia, Y. Y. , Yang, H. J. , 2010. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 26, 125-131. doi: 10.1007/s11274-009-0151-y
[29] Ul-Islam, M. , Khan, S. , Ullah, M. W. , Park, J. K. , 2015. Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 10, 1847-1861. doi: 10.1002/biot.201500106
[30] Ul-Islam, M. , Khan, T. , Khattak, W. A. , Park, J. K. , 2013a. Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20, 589-596. doi: 10.1007/s10570-012-9849-3
[31] Ul-Islam, M. , Khan, T. , Park, J. K. , 2012. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88, 596-603. doi: 10.1016/j.carbpol.2012.01.006
[32] Ul-Islam, M. , Khattak, W. A. , Kang, M. , Kim, S. M. , Khan, T. , Park, J. K. , 2013b. Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose 20, 253-263. doi: 10.1007/s10570-012-9799-9
[33] Ul-Islam, M. , Khattak, W. A. , Ullah, M. W. , Khan, S. , Park, J. K. , 2014. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21, 433-447. doi: 10.1007/s10570-013-0109-y
[34] Ul-Islam, M. , Subhan, F. , Islam, S. U. , Khan, S. , Shah, N. , Manan, S. , Ullah, M. W. , Yang, G. , 2019. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int. J. Biol. Macromol. 137, 1050-1059. doi: 10.1016/j.ijbiomac.2019.07.050
[35] Ul-Islam, M. , Ullah, M. W. , Khan, S. , Park, J. K. , 2020. Production of bacterial cellulose from alternative cheap and waste resources: a step for cost reduction with positive environmental aspects. Korean J. Chem. Eng. 37, 925-937. doi: 10.1007/s11814-020-0524-3
[36] Ullah, M. W. , Ul Islam, M. , Khan, S. , Shah, N. , Park, J. K. , 2017. Recent advancements in bioreactions of cellular and cell-free systems: a study of bacterial cellulose as a model. Korean J. Chem. Eng. 34, 1591-1599. doi: 10.1007/s11814-017-0121-2
[37] Ullah, M. W. , Ul-Islam, M. , Khan, S. , Kim, Y. , Jang, J. H. , Park, J. K. , 2016a. In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv. 6, 22424-22435. doi: 10.1039/C5RA26704H
[38] Ullah, M. W. , Ul-Islam, M. , Khan, S. , Kim, Y. , Park, J. K. , 2015. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr. Polym. 132, 286-294. doi: 10.1016/j.carbpol.2015.06.037
[39] Ullah, M. W. , Ul-Islam, M. , Khan, S. , Kim, Y. , Park, J. K. , 2016b. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr. Polym. 136, 908-916. doi: 10.1016/j.carbpol.2015.10.010
[40] Wang, H. , Liu, Y. , Qi, Z. , Wang, S. Y. , Liu S. X. , Li, X. , Wang, H. J. , Xia, X. C. , 2013. An overview on natural polysaccharides with antioxidant properties. Curr. Med. Chem. 20, 2899-2913. doi: 10.2174/0929867311320230006
[41] Wang, L. , Hu, S. M. , Ullah, M. W. , Li, X. H. , Shi, Z. J. , Yang, G. , 2020. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydr. Polym. 249, 116829. doi: 10.1016/j.carbpol.2020.116829
[42] Yang, J. C. , Wang, L. , Zhang, W. , Sun, Z. , Li, Y. , Yang, M. Z. , Zeng, D. , Peng, B. G. , Zheng, W. F. , Jiang, X. Y. , Yang, G. , 2018. Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation. Small 14, 1702582. doi: 10.1002/smll.201702582