[1] Azevedo S, Costa A M S, Andersen A, et al., 2017. Bioinspired ultratough hydrogel with fast recovery, self-healing, injectability and cytocompatibility. Advanced Materials, 29(28):1700759.DOI: 10.1002/adma.201700759.
[2] Bian H, Wei L, Lin C, et al., 2018. Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustainable Chemistry & Engineering, 6(4):4821-4828.DOI: 10.1021/acssuschemeng.7b04172.
[3] Chakraborty P, Guterman T, Adadi N, et al., 2019. A self-healing, all-organic, conducting, composite peptide hydrogel as pressure sensor and electrogenic cell soft substrate. ACS Nano, 13(1):163-175. DOI: 10.1021/acsnano.8b05067.
[4] Dikin D A, Stankovich S, Zimney E J, et al., 2007. Preparation and characterization of graphene oxide paper. Nature, 448(7152):457-460. DOI: 10.1038/nature06016.
[5] Ding Q Q, Xu X W, Yue Y Y, et al., 2018. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Applied Materials & Interfaces, 10(33):27987-28002. DOI: 10.1021/acsami.8b09656.
[6] Fatehi P, Xiao H N, van de Ven T G M, 2011. Quantitative analysis of cationic poly(vinyl alcohol) diffusion into the hairy structure of cellulose fiber pores:charge density effect.Langmuir, 27(22):13489-13496. DOI: 10.1021/la203364x.
[7] Fukahori S, Ichiura H, Kitaoka T, et al., 2003. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique.Environmental Science & Technology, 37(5):1048-1051.DOI: 10.1021/es0260115.
[8] Han J Q, Lei T Z, Wu Q L, 2014. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles:dynamic rheological properties and hydrogel formation mechanism. Carbohydrate Polymers, 102:306-316. DOI: 10.1016/j.carbpol.2013.11.045.
[9] Hong S H, Kim S, Park J P, et al., 2018. Dynamic bonds between boronic acid and alginate:hydrogels with stretchable, self-healing, stimuli-responsive, remoldable, and adhesive properties. Biomacromolecules, 19(6):2053-2061. DOI: 10.1021/acs.biomac.8b00144.
[10] Ke H, Yang L P, Xie M, et al., 2019. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nature Chemistry, 11(5):470-477.DOI: 10.1038/s41557-019-0235-8.
[11] Li Z Q, Wang G N, Wang Y G, et al., 2018. Reversible phase transition of robust luminescent hybrid hydrogels. Angewandte Chemie, 130(8):2216-2220. DOI: 10.1002/ange.201712670.
[12] Liu A D, Walther A, Ikkala O, et al., 2011. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules, 12(3):633-641. DOI: 10.1021/bm101296z.
[13] Lu B L, Lin F C, Jiang X, et al., 2017. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustainable Chemistry & Engineering, 5(1):948-956. DOI: 10.1021/acssuschemeng.6b02279.
[14] Mansur H S, Sadahira C M, Souza A N, et al., 2008. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering:C, 28(4):539-548. DOI: 10.1016/j.msec.2007.10.088.
[15] Nojoomi A, Arslan H, Lee K, et al., 2018. Bioinspired 3D structures with programmable morphologies and motions.Nature Communications, 9:3705. DOI: 10.1038/s41467-018-05569-8.
[16] Piest M, Zhang X L, Trinidad J, et al., 2011. pH-responsive, dynamically restructuring hydrogels formed by reversible crosslinking of PVA with phenylboronic acid functionalised PPO-PEO-PPO spacers (Jeffamines®). Soft Matter, 7(23):11111. DOI: 10.1039/c1sm06230a.
[17] Rauner N, Meuris M, Zoric M, et al., 2017. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature, 543(7645):407-410. DOI: 10.1038/nature21392.
[18] Sadri B, Goswami D, Sala de Medeiros M, et al., 2018.Wearable and implantable epidermal paper-based electronics.ACS Applied Materials & Interfaces, 10(37):31061-31068.DOI: 10.1021/acsami.8b11020.
[19] Spoljaric S, Salminen A, Luong N D, et al., 2014. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. European Polymer Journal, 56:105-117. DOI:10.1016/j.eurpolymj. 2014.03.009.
[20] Sun J Y, Zhao X, Illeperuma W R K, et al., 2012. Highly stretchable and tough hydrogels. Nature, 489(7414):133.DOI: 10.1038/nature11409.
[21] Tayeb A H, Hubbe M A, Tayeb P, et al., 2017. Soy proteins as a sustainable solution to strengthen recycled paper and reduce deposition of hydrophobic contaminants in papermaking:a bench and pilot-plant study. ACS Sustainable Chemistry & Engineering, 5(8):7211-7219. DOI:10.1021/acssuschemeng. 7b01425.
[22] Taylor D L, in het Panhuis M, 2016. Self-healing hydrogels.Advanced Materials, 28(41):9060-9093. DOI: 10.1002/adma.201601613.
[23] Tejado A, van de Ven T G M, 2010. Why does paper get stronger as it dries? Materials Today, 13(9):42-49. DOI: 10.1016/s1369-7021(10)70164-4.
[24] Wang Q G, Mynar J L, Yoshida M, et al., 2010. High-watercontent mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 463(7279):339-343. DOI: 10.1038/nature08693.
[25] Wu D, Li L M, Wang Y, et al., 2018. Localized liquefaction coupled with rapid solidification for miniaturizing/nanotexturizing microfibrous bioassemblies into robust, liquid-resistant sheet. ACS Sustainable Chemistry & Engineering, 6(11):15697-15707. DOI: 10.1021/acssuschemeng.8b04215.
[26] Yang H P, Yan R, Chen H P, et al., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12/13):1781-1788. DOI: 10.1016/j.fuel.2006.12.013.