[1] Abdulkareem, A. S., Ayo, S. A., Ogochukwu, M. U., 2015. Production and characterization of bioethanol from sugarcane bagasse as alternative energy sources. London U. K. : Proceedings of the World Congress on Engineering.
[2] Agu, C. M. , Kadurumba, C. H. , Agulanna, A. C. , Aneke, O. O. , Agu, I. E. , Eneh, J. N. , 2018. Nonlinear kinetics, thermodynamics, and parametric studies of Colocynthis vulgaris shrad seeds oil extraction. Ind. Crop. Prod. 123, 386-400. doi: 10.1016/j.indcrop.2018.06.074
[3] Agu, C. M. , Menkiti, M. C. , Ekwe, E. B. , Agulanna, A. C. , 2020. Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artif. Intell. Agric. 4, 1-11. http://www.sciencedirect.com/science/article/pii/S2589721720300064
[4] Akponah, E. , Akpomie, O. , 2011. Analysis of the suitability of yam, potato and cassava root peels for bioethanol production using saccharomyces cerevisiae. International Research Journal of Microbiology 2, 393-398. http://www.mendeley.com/research/analysis-suitability-yam-potato-cassava-root-peels-bioethanol-production-using-saccharomyces-cerevis/
[5] Amerine, M. A. , Ough, C. S. , 1974. Wine and Must Analysis. John Wiley & Sons, New York.
[6] Ana, D. , Julie, L. , Ana, B. , Ignacio, D. , lldefonso, C. , 2013. Pretreatment of rice hulls with alkaline peroxide to enhance enzyme hydrolysis for ethanol production. The Italian Association of Chemical Engineering 32, 23-25. http://www.researchgate.net/publication/273951995_Pretreatment_of_Rice_Hulls_with_Alkaline_Peroxide_to_Enhance_Enzyme_Hydrolysis_for_Ethanol_Production
[7] Asadu, C. O. , Egbuna, S. O. , Chime, T. O. , Eze, C. N. , Kevin, D. , Mbah, G. O. , Ezema, A. C. , 2019. Survey on solid wastes management by composting: optimization of key process parameters for biofertilizer synthesis from agro wastes using response surface methodology (RSM). Artif. Intell. Agric. 3, 52-61. http://www.sciencedirect.com/science/article/pii/S2589721719300340
[8] Augustine, O. , Ayeni, O. A. , Adeeyo, O. M. , Oresegun, T. E. O. , 2015. Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. American Journal of Engineering Research 4, 14-19. http://www.researchgate.net/publication/280641412_Compositional_analysis_of_lignocellulosic_materials_Evaluation_of_an_economically_viable_method_suitable_for_woody_and_non-woody_biomass
[9] Carrillo, F. , Lis, M. J. , Colom, X. , Lopez-Mesas, M. , Valldeperas, J. , 2005. Effect of alkali pretreatment on kinetic study of the enzymatic hydrolysis of sugarcane bagasse 447. Brazilian Journal of Chemical Engineering 30, 437-447.
[10] Chen, G. , Chen, J. , Srinivasakannan, C. , Peng, J. H. , 2012. Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. 258, 3068-3073. doi: 10.1016/j.apsusc.2011.11.039
[11] Chen, M. , Zhao, J. , Xia, L. M. , 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411-415. doi: 10.1016/j.carbpol.2007.06.011
[12] Efri, M., Dwi, W. W., Djali, F., Edi, S., 2017. Optimization and kinetic modelling of the enzymatic hydrolysis of oil palm petioles. ICSAFS Conference Proceedings, 2nd International Conference on Sustainable Agriculture and Food Security, A Comprehensive Approach.
[13] Ezeonu, I. M., Okafor, J. I., Ogbonna, J. C., 2011. Laboratory Exercises in Microbiology. Ephrata Press,
[14] Farah, A. , Ahmad, T. J. , Mohd, H. K. , Maizirwan, M. , 2011. Study of growth kinetic and modelling of ethanol production by Saccharomyces cerevisae. African Journal of Biotechnology 16, 18842-18846. http://www.cabdirect.org/abstracts/20123030865.html;jsessionid=4AD84BD4D9C0C09C709D1F0BA7A6EEC5
[15] Fogler, H. S., 2006. Elements of Chemical Reaction Engineering. Prentice Hall of India, New
[16] Galbe, M. , Zacchi, G. , 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618-628. doi: 10.1007/s00253-002-1058-9
[17] Highina, B. K. , Hashim, I. , Bugaje, I. M. , 2011. Optimization of ethanol production from sugar molasses in Nigeria. Journal of Applied Technology in Environmental Sanitation 1, 233-237. http://www.cabdirect.org/abstracts/20123193149.html
[18] Horwitz, W., Latima, G., 2005. Official Method of Analysis' appendix C. Association of organic and Applied Chemistry (AOAC) International. Pp 7-12; pp 16-34
[19] Igbokwe, P. K. , Idogwu, C. N. , Nwabanne, J. T. , 2016. Enzymatic hydrolysis and fermentation of plantain peels: optimization and kinetic studies. Adv. Chem. Eng. Sci. 6, 216-235. doi: 10.4236/aces.2016.62023
[20] Ighodaro, O. M., 2012. Evaluation Study of Nigerian Species of Musa paradisiaca Peels. Available at: http://www.sciencepub.net/researcher.
[21] Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., Oforji, S., 2013. Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. Int. J. Environ. Sci. Dev. 213-216.
[22] Kitanović, S. , Milenović, D. , Veljković, V. B. , 2008. Empirical kinetic models for the resinoid extraction from aerial parts of St. John's wort (Hypericum perforatum L. ). Biochem. Eng. J. 41, 1-11. doi: 10.1016/j.bej.2008.02.010
[23] Lalitha, G., Sivaraji, R., 2011. Use of fruit biomass peel for ethanol production. International Journal of Pharma and Bio Science 2, 23.
[24] Lazic, Z. R., 2004. Design of Experiment in Chemical Engineering. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
[25] Lebaka, V. R. , Obulam, V. S. , Young, J. W. , 2011. Production of ethanol from mango peel by saccharomyces cerevisiae. Academic Journal 10, 4183-4189. http://www.cabdirect.org/abstracts/20113187787.html
[26] Luo, X. L., Liu, J., Zheng, P. T., Li, M., Zhou, Y., Huang, L. L., Chen, L. H., Shuai, L., 2019. Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnol. Biofuels 12, 51.
[27] Mazaheri, H. , Ghaedi, M. , Ahmadi Azqhandi, M. H. , Asfaram, A. , 2017. Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(ⅱ) removal from a binary aqueous solution by natural walnut carbon. Phys. Chem. Chem. Phys. 19, 11299-11317. doi: 10.1039/C6CP08437K
[28] Menkiti, M. C. , Agu, C. M. , Udeigwe, T. K. , 2017. Kinetic and parametric studies for the extractive synthesis of oil from Terminalia catappa L. kernel. React. Kinetics Mech. Catal. 120, 129-147. doi: 10.1007/s11144-016-1101-y
[29] Mike, B., Sue, A. A., 1998. Fermented fruits and vegetables. A global perspective. Fao Agricultural service Bulletin 134
[30] Murray R. S., Larry J. S., 2011. Schaum's Outlines Statistics (4th Edition). New York: McGraw Hill.
[31] NsukkaFarah, A. , Ahmad, T. J. , Mohd, H. K. , Maizirwan, M. , 2011. Study of growth kinetic and modelling of ethanol production by Saccharomyces cerevisae. African Journal of Biotechnology 16, 18842-18846. http://www.cabdirect.org/abstracts/20123030865.html;jsessionid=4AD84BD4D9C0C09C709D1F0BA7A6EEC5
[32] Ocloo, F. C. K. , Ayernor, G. S. , 2008. Physical, chemical and microbiological changes in alcoholic fermentation of sugar syrup from cassava flour. African Journal of Biotechnology 7, 164-168. http://www.oalib.com/paper/1326307
[33] Ogbe, A. O., George, G. A. L., 2012. Nutritional and anti-nutrient composition of melon Husks: potential as feed ingredient in poultry Diet
[34] Ogbonna, O. , 2013. Floral habits and seed production characteristics in Egusi melon (Colocynthis citrullus L. ). J. Plant Breed. Crop Sci. 4, 137-140. doi: 10.5897/JPBCS2013.0381
[35] Ogbonna, P. E. , Obi, I. U. , 2000. The influence of poultry manure application and plant density on the growth and yield of Egusi melon (Colocynthis citrullus) on the Nsukka Plains of south eastern Nigeria. Agro-Science 1, 63-74. http://www.cabdirect.org/abstracts/20033106736.html
[36] Ogunwa, K. I. , Ofodile, S. , Achugasim, O. , 2015. Feasibility study of melon seed oil as a source of biodiesel. J. Power Energy Eng. 3, 24-27. http://www.cqvip.com/QK/72737X/20158/HS727372015008003.html
[37] Onwu, D. O., 2004. Integrated Energy Conversion (1st Edition). Enugu: Immaculate Publications Limited.
[38] Orjiakor, P. I. , Igborbgor, C. J. , Ogu, G. I. , 2017. Bio-ethanol yielding potentials of melon seed peels using fungal isolates from palm oil effluents. IJBLST 9, 18-25. http://www.researchgate.net/publication/322629139_Bio-ethanol_yielding_potentials_of_Melon_seed_peels_using_fungal_isolates_from_Palm_oil_effluents
[39] Oyeleke, S. B. , Dauda, B. E. N. , Oyewole, O. A. , Okoliegbe, I. N. , Ojobode. T. , 2012. Production of bioethanol from cassava and sweet potato peels. Advanced in Environmental Biology 6, 241-245. http://www.cabdirect.org/abstracts/20123057510.html
[40] Pervez, S., Aman, A., Iqbal, S., Siddiqui, N., Ul Qader, S., 2014. Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnol. 14, 49.
[41] Pilkington, J. L. , Preston, C. , Gomes, R. L. , 2014. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crop. Prod. 58, 15-24. doi: 10.1016/j.indcrop.2014.03.016
[42] Pornpunyapat, J. , Chotigeat, W. , Chetpattananondh, P. , 2014. Bioethanol production from pineapple peel juice using Saccharomyces cerevisiae. Adv. Mater. Res. 875/876/877, 242-245. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=XYSW201212001047
[43] Rosdee, N. M., Masngut, N., Shaarani, S. M., Jamek, S., Sueb, M. M., 2020. Enzymatic hydrolysis of lignocellulosic biomass from pineapple leaves by using endo-1, 4-xylanase: effect of pH, temperature, enzyme loading and reaction time. IOP Conf. Ser. : Mater. Sci. Eng. 736, 022095.
[44] Sakimoto, K. , Kanna, M. C. , Matsumura, Y. , 2017. Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass Bioenergy 99, 116-121. doi: 10.1016/j.biombioe.2017.02.016
[45] Streamer, M. , Eriksson, K. E. , Pettersson, B. , 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. functional characterization of five endo-1, 4-beta-glucanases and one exo-1, 4-beta-glucanase. Eur. J. Biochem. 59, 607-613. doi: 10.1111/j.1432-1033.1975.tb03919.x/full
[46] Talib, N. B. , Triwahyono, S. , Jalil, A. A. , Mamat, C. R. , Salamun, N. , Fatah, N. A. A. , Sidik, S. M. , Teh, L. P. , 2016. Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils. Energy Convers. Manag. 108, 411-421. doi: 10.1016/j.enconman.2015.11.031
[47] Tengborg, C. , Galbe, M. , Zacchi, G. , 2001. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17, 110-117. doi: 10.1021/bp000145+
[48] Zakpaa, H. D., Mak, M., Johnson, F. S., 2009. Production of bio-ethanol from corncobs using Aspergillus niger and S. cerevisiae in simultaneous saccharification and fermentation. Academic Journal.
[49] Zivorad, R. L., 2004. Design of Experiment in Chemical Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.