[1] Alemdar, A., Sain, M., 2008. Biocomposites from wheat straw nanofibers:Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68, 557-565. doi: 10.1016/j.compscitech.2007.05.044
[2] Aulin, C., Salazar-Alvarez, G., Lindström, T., 2012. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4, 6622.
[3] Benítez, A.J., Torres-Rendon, J., Poutanen, M., Walther, A., 2013. Humidity and multiscale structure govern mechanical properties and defor-mation modes in films of native cellulose nanofibrils. Biomacromolecules 14, 4497-4506. doi: 10.1021/bm401451m
[4] Bian, H.Y., Gao, Y., Yang, Y.Q., Fang, G.G., Dai, H.Q., 2018a. Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour. Technol. 256, 321-327. doi: 10.1016/j.biortech.2018.02.038
[5] Bian, Z.X., Miao, X.R., Lin, J.Y., Tian, F., Bian, F.G., Li, H., 2018b. Extraction and structural investigation of jute cellulose nanofibers. Nucl. Sci. Tech. 29, 106. doi: 10.1007/s41365-018-0433-x
[6] Carrillo, F., Colom, X., Suñol, J., Saurina, J., 2004. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 40, 2229-2234. doi: 10.1016/j.eurpolymj.2004.05.003
[7] de France, K.J., Hoare, T., Cranston, E.D., 2017. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609-4631. doi: 10.1021/acs.chemmater.7b00531
[8] Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10, 162-165. doi: 10.1021/bm801065u
[9] Fukuzumi, H., Saito, T., Okita, Y., Isogai, A, 2010. Thermal stabilization of TEMPO-oxidized cellulose. Polym. Degrad. Stab. 95, 1502-1508. doi: 10.1016/j.polymdegradstab.2010.06.015
[10] Han, J.Q., Zhou, C.J., Wu, Y.Q., Liu, F.Y., Wu, Q.L., 2013. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14, 1529-1540. doi: 10.1021/bm4001734
[11] Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale. 3(1), 71-85. doi: 10.1039/C0NR00583E
[12] Iwamoto, S., Isogai, A., Iwata, T., 2011. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biom-acromolecules 12, 831-836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=128b1532c4a6f37d5f0c25bfc8053345
[13] Iwamoto, S., Kai, W.H., Isogai, A., Iwata, T., 2009. Elastic Modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571-2576. doi: 10.1021/bm900520n
[14] Iwamoto, S., Nakagaito, A.N., Yano, H., 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89, 461-466. doi: 10.1007/s00339-007-4175-6
[15] Kasyapi, N., Chaudhary, V., Bhowmick, A.K., 2013. Bionanowhiskers from jute:Preparation and characterization. Carbohydr. Polym. 92, 1116-1123. doi: 10.1016/j.carbpol.2012.10.021
[16] Kaushik, A., Singh, M., 2011. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 346, 76-85. doi: 10.1016/j.carres.2010.10.020
[17] Klemm, D., Heublein, B., Fink, H.P., Bohn, A., 2005. Cellulose:fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393. doi: 10.1002/anie.200460587
[18] Lin, J.Y., Yu, L.B., Tian, F., Zhao, N., Li, X.H., Bian, F.G., Wang, J., 2014. Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr. Polym. 109, 35-43. doi: 10.1016/j.carbpol.2014.03.045
[19] Liu, Q., Lu, Y., Aguedo, M., Jacquet, N., Ouyang, C., He, W.Q., Yan, C.R., Bai, W.B., Guo, R., Goffin, D., Song, J.Q., Richel, A., 2017. Isola-tion of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, mi-crowave-assisted hydrolysis, and microfluidization. ACS Sustainable Chem. Eng. 5, 6183-6191. doi: 10.1021/acssuschemeng.7b01108
[20] Liu, R.G., Yu, H., Huang, Y., 2005. Structure and morphology of cellulose in wheat straw. Cellulose 12, 25-34. doi: 10.1007/s10570-004-0955-8
[21] Malho, J.M., Laaksonen, P., Walther, A., Ikkala, O., Linder, M.B., 2012. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromolecules 13, 1093-1099. doi: 10.1021/bm2018189
[22] Miao, X.R., Lin, J.Y., Tian, F., Li, X.H., Bian, F.G., Wang, J., 2016a. Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbo-hydr. Polym. 136, 841-850. doi: 10.1016/j.carbpol.2015.09.056
[23] Miao, X.R., Tian, F., Lin, J.Y., Li, H., Li, X.H., Bian, F.G., Zhang, X.Z., 2016b. Tuning the mechanical properties of cellulose nanofibrils rein-forced polyvinyl alcohol composites via altering the cellulose polymorphs. RSC Adv. 6, 83356-83365. doi: 10.1039/C6RA14517E
[24] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941.
[25] Morán, J.I., Alvarez, V.A., Cyras, V.P., Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149-159. doi: 10.1007/s10570-007-9145-9
[26] Mulyadi, A., Zhang, Z., Deng, Y.L., 2016. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl. Mater. Interfaces 8, 2732-2740. doi: 10.1021/acsami.5b10985
[27] Oun, A.A., Rhim, J.W, 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellu-lose-based nanocomposite films. Carbohydr. Polym. 150, 187-200. doi: 10.1016/j.carbpol.2016.05.020
[28] Pang, J.H., Wu, M., Zhang, Q.H., Tan, X., Xu, F., Zhang, X.M., Sun, R.C., 2015. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr. Polym. 121, 71-78. doi: 10.1016/j.carbpol.2014.11.067
[29] Pelissari, F.M., do Amaral Sobral, P.J., Menegalli, F.C., 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21, 417-432. doi: 10.1007/s10570-013-0138-6
[30] Peng, N., Wang, Y.F., Ye, Q.F., Liang, L., An, Y.X., Li, Q.W., Chang, C.Y., 2016. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr. Polym. 137, 59-64. doi: 10.1016/j.carbpol.2015.10.057
[31] Rosa, S.M.L., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M.B., Bica, C.I.D., 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131-1138. doi: 10.1016/j.carbpol.2011.08.084
[32] Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A., 2006a. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687-1691. doi: 10.1021/bm060154s
[33] Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A., 2006b. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687-1691. doi: 10.1021/bm060154s
[34] Sánchez, R., Espinosa, E., Domínguez-Robles, J., Loaiza, J.M., Rodríguez, A., 2016. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int. J. Biol. Macromol. 92, 1025-1033. doi: 10.1016/j.ijbiomac.2016.08.019
[35] Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., Berglund, L.A., 2012. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interfaces 4, 1043-1049. doi: 10.1021/am2016766
[36] Sinha, E., Rout, S.K., 2009. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 32, 65-76. doi: 10.1007/s12034-009-0010-3
[37] van den Berg, O., Capadona, J.R., Weder, C., 2007. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8, 1353-1357. doi: 10.1021/bm061104q
[38] Wang, B.C., Benitez, A.J., Lossada, F., Merindol, R., Walther, A., 2016. Bioinspired mechanical gradients in cellulose nanofibril/polymer na-nopapers. Angew. Chem. Int. Ed. 55, 5966-5970. doi: 10.1002/anie.201511512
[39] Xu, F., Shi, Y.C., Wang, D.H., 2012. Structural features and changes of lignocellulosic biomass during thermochemical pretreatments:a syn-chrotron X-ray scattering study on photoperiod-sensitive Sorghum. Carbohydr. Polym. 88, 1149-1156. doi: 10.1016/j.carbpol.2012.01.041
[40] Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D., Wiesenborn, D.P., 2013. Cellulose nanocrystals vs. Cellulose nanofibrils:a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5, 2999-3009. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229470238/
[41] Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788. doi: 10.1016/j.fuel.2006.12.013
[42] Yang, Huang, Q.B., Payne, G.F., Sun, R.C., Wang, X.H., 2019. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725-732. doi: 10.1039/C8NR07123C
[43] Yu, L.B., Lin, J.Y., Tian, F., Li, X.H., Bian, F.G., Wang, J., 2014. Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J. Mater. Chem. A 2, 6402.
[44] Zhang, Y.X., Nypelö, T., Salas, C., Arboleda, J., Hoeger, I.C., Rojas, O.J., 2013. Cellulose nanofibrils. J. Renew. Mater. 1, 195-211. doi: 10.7569/JRM.2013.634115