[1] Ahvazi, B., Wojciechowicz, O., Ton-That, T.M., Hawari, J., 2011. Preparation of lignopolyols from wheat straw soda lignin. J. Agric. Food Chem. 59, 10505-10516. doi: 10.1021/jf202452m
[2] Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., Yuvaraj, A.R., 2016. Polyurethane types, synthesis and applications-A review. RSC Adv. 6, 114453-114482. doi: 10.1039/C6RA14525F
[3] Arshanitsa, A., Krumina, L., Telysheva, G., Dizhbite, T., 2016. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crop. Prod. 92, 1-12. doi: 10.1016/j.indcrop.2016.07.050
[4] Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., 2013. Liquid fuels, hydrogen and chemicals from lignin:a critical review. Renew. Sustain. Energy Rev. 21, 506-523. doi: 10.1016/j.rser.2012.12.022
[5] Azwar, E., Wan Mahari, W.A., Chuah, J.H., Vo, D.V.N., Ma, N.L., Lam, W.H., Lam, S.S., 2018. Transformation of biomass into carbon nanofiber for supercapacitor application-A review. Int. J. Hydrog. Energy 43, 20811-20821. doi: 10.1016/j.ijhydene.2018.09.111
[6] Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M.B., Lazzeri, A, 2015. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 64, 147-156. doi: 10.1016/j.eurpolymj.2014.11.039
[7] Bonini, C., D'Auria, M., Emanuele, L., Ferri, R., Pucciariello, R., Sabia, A.R., 2005. Polyurethanes and polyesters from lignin. J. Appl. Polym. Sci. 98, 1451-1456. doi: 10.1002/app.22277
[8] Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G., 2017. Lignocellulosics as sustainable resources for production of bioplastics-A review. J. Clean. Prod. 162, 646-664. doi: 10.1016/j.jclepro.2017.05.209
[9] Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals:state-of-the-art review and future prospects. Bioresour. Technol. 269, 465-475. doi: 10.1016/j.biortech.2018.08.065
[10] Carriço, C.S., Fraga, T., Pasa, V.M.D, 2016. Production and characterization of polyurethane foams from a simple mixture of Castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53-61. doi: 10.1016/j.eurpolymj.2016.10.012
[11] Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20, 131-141. doi: 10.1016/j.indcrop.2004.04.016
[12] Chen, J.C., Yang, G.H., Ji, X.X., Wang, Q., 2017. Efficient utilization of lignocellulosic resources on the basis of pulp and paper processes, J. Bioresour. Bioprod. 2, 186-187.
[13] Chen, Y.C., Fu, S.Y., Zhang, H, 2020. Signally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse. Colloids Surfaces A:Physicochem. Eng. Aspects 585, 124164. doi: 10.1016/j.colsurfa.2019.124164
[14] Cheng, S.N., Wilks, C., Yuan, Z.S., Leitch, M., Xu, C.C., 2012. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polym. Degrad. Stab. 97, 839-848. doi: 10.1016/j.polymdegradstab.2012.03.044
[15] Cheradame, H., Detoisien, M., Gandini, A., Pla, F., Roux, G., 1989. Polyurethane from kraft lignin. Brit. Poly. J. 21, 269-275. doi: 10.1002/pi.4980210314
[16] Chio, C., Sain, M., Qin, W.S., 2019. Lignin utilization:a review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232-249. doi: 10.1016/j.rser.2019.03.008
[17] Chiou, B.S., Schoen, P.E., 2002. Effects of crosslinking on thermal and mechanical properties of polyurethanes. J. Appl. Polym. Sci. 83, 212-223. doi: 10.1002/app.10056
[18] Chung, H., Washburn, N.R., 2012. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces 4, 2840-2846. doi: 10.1021/am300425x
[19] Cinelli, P., Anguillesi, I., Lazzeri, A., 2013. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 49, 1174-1184. doi: 10.1016/j.eurpolymj.2013.04.005
[20] Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I., 2004. Properties of lignin-polyurethane films prepared by casting method. Ind. Crop. Prod. 20, 231-241. doi: 10.1016/j.indcrop.2004.04.024
[21] Collins, M.N., Nechifor, M., Tanasă, F., Zănoagă, M., McLoughlin, A., Stróżyk, M.A., Culebras, M., Teacă, C.A., 2019. Valorization of lignin in polymer and composite systems for advanced engineering applications-A review. Int. J. Biol. Macromol. 131, 828-849. doi: 10.1016/j.ijbiomac.2019.03.069
[22] Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A., 2016. New insights into the structure and composition of technical lignins:a comparative characterisation study. Green Chem. 18, 2651-2665. doi: 10.1039/C5GC03043A
[23] Cui, C.Z., Sun, R.K., Argyropoulos, D.S., 2014. Fractional precipitation of softwood kraft lignin:isolation of narrow fractions common to a variety of lignins. ACS Sustainable Chem. Eng. 2, 959-968. doi: 10.1021/sc400545d
[24] da Silva, E.A.B., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E., 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87, 1276-1292. doi: 10.1016/j.cherd.2009.05.008
[25] de Haro, J.C., Allegretti, C., Smit, A.T., Turri, S., D'Arrigo, P., Griffini, G., 2019. Biobased polyurethane coatings with high biomass content:tailored properties by lignin selection. ACS Sustainable Chem. Eng. 7, 11700-11711. doi: 10.1021/acssuschemeng.9b01873
[26] Duong, L.D., Nam, G.Y., Oh, J.S., Park, I.K., Luong, N.D., Yoon, H.K., Lee, S.H., Lee, Y., Yun, J.H., Lee, C.G., Hwang, S.H., Nam, J.D., 2014. High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyanate. BioResources 9, 2359-2371. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_09_2_2359_Duong_Thermoplastic_Polymerization_Kraft/2655
[27] Evtuguin, D.V., Andreolety, J.P., Gandini, A, 1998. Polyurethanes based on oxygen-organosolv lignin. Eur. Polym. J. 34, 1163-1169. doi: 10.1016/S0014-3057(97)00245-0
[28] Feldman, D., Lacasse, M.A., 1989. Morphology of lignin-polyurethane blends. MRS Proc. 153, 193. doi: 10.1557/PROC-153-193
[29] Feldman, D., Lacasse, M.A., 1994. Polymer-filler interaction in polyurethane kraft lignin polyblends. J. Appl. Polym. Sci. 51, 701-709. doi: 10.1002/app.1994.070510416
[30] Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T., 2018. Lignin-polyurethane based biodegradable foam. Open J. Polym. Chem. 8, 1-10. doi: 10.4236/ojpchem.2018.81001
[31] Gandini, A., Lacerda, T.M., 2015. From monomers to polymers from renewable resources:recent advances. Prog. Polym. Sci. 48, 1-39. doi: 10.1016/j.progpolymsci.2014.11.002
[32] Gandini, A., Lacerda, T.M., Carvalho, A.J.F., Trovatti, E., 2016. Progress of polymers from renewable resources:furans, vegetable oils, and polysaccharides. Chem. Rev. 116, 1637-1669. doi: 10.1021/acs.chemrev.5b00264
[33] Garcia Gonzalez, M.N., Levi, M., Turri, S., Griffini, G., 2017. Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J. Appl. Polym. Sci. 134, 45318. doi: 10.1002/app.45318
[34] Glasser, W.G., Barnett, C.A., Rials, T.G., Saraf, V.P., 1984. Engineering plastics from lignin Ⅱ. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci. 29, 1815-1830. doi: 10.1080/02773819308020508
[35] Glasser, W.G., Leitheiser, R.H, 1984. Engineering plastics from lignin. Polym. Bull. 12, 1-5. doi: 10.1007/BF00258264
[36] Glasser, W.G., Saraf, V.P., Newman, W.H., 1982. Hydroxy propylated lignin-isocyanate combinations as bonding agents for wood and cellulosic fibers. J. Adhesion 14, 233-255. doi: 10.1080/00218468208073206
[37] Gómez-Fernández, S., Ugarte, L., Calvo-Correas, T., Peña-Rodríguez, C., Corcuera, M.A., Eceiza, A., 2017. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crop. Prod. 100, 51-64. doi: 10.1016/j.indcrop.2017.02.005
[38] Griffini, G., Passoni, V., Suriano, R., Levi, M., Turri, S., 2015. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustainable Chem. Eng. 3, 1145-1154. doi: 10.1021/acssuschemeng.5b00073
[39] Hatakeyama, H., 2002. Polyurethanes containing lignin. Chemical Modification, Properties, and Usage of Lignin. Boston, MA:Springer US, 41-56.
[40] Hu, S.J., Luo, X.L., Li, Y.B., 2014. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7, 66-72. doi: 10.1002/cssc.201300760
[41] Huang, J., Zhang, L.N., 2002. Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43, 2287-2294. doi: 10.1016/S0032-3861(02)00028-9
[42] Huo, S.P., Nie, M.C., Kong, Z.W., Wu, G.M., Chen, J., 2012. Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam. J. Appl. Polym. Sci. 125, 152-157. doi: 10.1002/app.35401
[43] Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., 2013. Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym. 14, 1301-1310. doi: 10.1007/s12221-013-1301-2
[44] Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., Roh, H.G., 2013. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym. 14, 1082-1093. doi: 10.1007/s12221-013-1082-7
[45] Ji, D., Fang, Z., He, W., Zhang, K., Luo, Z.Y., Wang, T.W., Guo, K., 2015. Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustainable Chem. Eng. 3, 1197-1204. doi: 10.1021/acssuschemeng.5b00170
[46] Jia, Z., Lu, C.X., Zhou, P.C., Wang, L., 2015. Preparation and characterization of high boiling solvent lignin-based polyurethane film with lignin as the only hydroxyl group provider. RSC Adv. 5, 53949-53955. doi: 10.1039/C5RA09477A
[47] Jiang, X., Savithri, D., Du, X.Y., Pawar, S., Jameel, H., Chang, H.M., Zhou, X.F., 2017. Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustainable Chem. Eng. 5, 835-842. doi: 10.1021/acssuschemeng.6b02174
[48] Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175-1200. doi: 10.1039/C5GC02616D
[49] Kelley, S.S., Glasser, W.G., Ward, T.C., 1988. Engineering plastics from lignin. XV. Polyurethane films from chain-extended hydroxypropyl lignin. J. Appl. Polym. Sci. 36, 759-772. http://www.onacademic.com/detail/journal_1000033759572610_c86e.html
[50] Kelley, S.S., Glasser, W.G., Ward, T.C., 1989a. Effect of soft-segment content on the properties of lignin-based polyurethanes. ACS Symposium Series. Washington, DC:American Chemical Society, 402-413.
[51] Kelley, S.S., Ward, T.C., Rials, T.G., Glasser, W.G., 1989b. Engineering plastics from lignin. XVⅡ. Effect of molecular weight on polyurethane film properties. J. Appl. Polym. Sci. 37, 2961-2971. doi: 10.1002/app.1989.070371014
[52] Kurańska, M., Pinto, J.A., Salach, K., Barreiro, M.F., Prociak, A., 2020. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols:a comparative study. Ind. Crop. Prod. 143, 111882. doi: 10.1016/j.indcrop.2019.111882
[53] Laurichesse, S., Avérous, L., 2014. Chemical modification of lignins:towards biobased polymers. Prog. Polym. Sci. 39, 1266-1290. doi: 10.1016/j.progpolymsci.2013.11.004
[54] Laurichesse, S., Huillet, C., Avérous, L., 2014. Original polyols based on organosolv lignin and fatty acids:new bio-based building blocks for segmented polyurethane synthesis. Green Chem. 16, 3958-3970. doi: 10.1039/C4GC00596A
[55] Li, B., Zhou, M.Y., Huo, W.Z., Cai, D., Qin, P.Y., Cao, H., Tan, T.W, 2020a. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crop. Prod. 143, 111887. doi: 10.1016/j.indcrop.2019.111887
[56] Li, H., Sun, J.T., Wang, C., Liu, S.L., Yuan, D., Zhou, X., Tan, J., Stubbs, L., He, C.B., 2017. High Modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chem. Eng. 5, 7942-7949. doi: 10.1021/acssuschemeng.7b01481
[57] Li, H., Yuan, D., Tang, C.H., Wang, S.X., Sun, J.T., Li, Z.B., Tang, T., Wang, F.K., Gong, H., He, C.B., 2016. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151-157. doi: 10.1016/j.carbon.2015.12.075
[58] Li, H., Zhao, Y.H., Liu, S.Q., Li, P.C., Yuan, D., He, C.B., 2020b. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors. Microporous Mesoporous Mater. 297, 109960. doi: 10.1016/j.micromeso.2019.109960
[59] Li, Y., Ragauskas, A.J., 2012a. Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv. 2, 3347. doi: 10.1039/c2ra00646d
[60] Li, Y., Ragauskas, A.J., 2012b. Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32, 210-224. doi: 10.1080/02773813.2011.652795
[61] Liu, C.J., Wang, H.M., Karim, A.M., Sun, J.M., Wang, Y., 2014a. Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 43, 7594-7623. doi: 10.1039/C3CS60414D
[62] Liu, J., Liu, H.F., Deng, L., Liao, B., Guo, Q.X., 2013. Improving aging resistance and mechanical properties of waterborne polyurethanes modified by lignin amines. J. Appl. Polym. Sci. 130, 1736-1742. doi: 10.1002/app.39267
[63] Liu, W.F., Fang, C., Wang, S.Y., Huang, J.H., Qiu, X.Q., 2019. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks. Macromolecules 52, 6474-6484. doi: 10.1021/acs.macromol.9b01413
[64] Liu, W.J., Jiang, H., Yu, H.Q., 2015a. Thermochemical conversion of lignin to functional materials:a review and future directions. Green Chem. 17, 4888-4907. doi: 10.1039/C5GC01054C
[65] Liu, W.S., Zhou, R., Goh, H.L.S., Huang, S., Lu, X.H., 2014b. From waste to functional additive:toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces 6, 5810-5817. doi: 10.1021/am500642n
[66] Liu, W.S., Zhou, R., Zhou, D., Ding, G.Q., Soah, J.M., Yue, C.Y., Lu, X.H., 2015b. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83, 188-197. doi: 10.1016/j.carbon.2014.11.036
[67] Lovell, E.L., Hibbert, H., 1941. Studies on lignin and related compounds. LⅡ. New method for the fractionation of lignin and other polymers. J. Am. Chem. Soc. 63, 2070-2073. doi: 10.1021/ja01853a012
[68] Mahmood, N., Yuan, Z.S., Schmidt, J., (Charles) Xu, C., 2013. Production of polyols via direct hydrolysis of kraft lignin:Effect of process parameters. Bioresour. Technol. 139, 13-20. doi: 10.1016/j.biortech.2013.03.199
[69] Mahmood, N., Yuan, Z.S., Schmidt, J., Tymchyshyn, M., Xu, C.C., 2016a. Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18, 2385-2398. doi: 10.1039/C5GC02876K
[70] Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C., 2015. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 68, 1-9. https://www.researchgate.net/publication/254371569_Kraft_Lignin-Based_Rigid_Polyurethane_Foam
[71] Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C.C., 2016b. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams:a review. Renew. Sustain. Energy Rev. 60, 317-329. doi: 10.1016/j.rser.2016.01.037
[72] Mohammadpour, R., Mir Mohamad Sadeghi, G., 2020. Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application. J. Polym. Environ. 28, 892-905. doi: 10.1007/s10924-019-01650-5
[73] Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., Gandini, A., 2005. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290, 1009-1016. doi: 10.1002/mame.200500200
[74] Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., Noreen, A., 2016. Lignin-derivatives based polymers, blends and composites:a review. Int. J. Biol. Macromol. 93, 296-313. doi: 10.1016/j.ijbiomac.2016.08.030
[75] Pan, X.J., Saddler, J.N., 2013. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6, 12. doi: 10.1186/1754-6834-6-12
[76] Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion:a review of thermochemical methods. Chem. Eng. Technol. 34, 29-41. doi: 10.1002/ceat.201000270
[77] Park, S.Y., Kim, J.Y., Youn, H.J., Choi, J.W., 2018. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 106, 793-802. doi: 10.1016/j.ijbiomac.2017.08.069
[78] Passoni, V., Scarica, C., Levi, M., Turri, S., Griffini, G., 2016. Fractionation of industrial softwood kraft lignin:solvent selection as a tool for tailored material properties. ACS Sustainable Chem. Eng. 4, 2232-2242. doi: 10.1021/acssuschemeng.5b01722
[79] Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., Kumar, G., 2019. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 271, 462-472. doi: 10.1016/j.biortech.2018.09.070
[80] Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324. doi: 10.1039/C4GC01333F
[81] Reimann, A., Mörck, R., Yoshida, H., Hatakeyama, H., Kringstad, K.P., 1990. Kraft lignin in polyurethanes. Ⅲ. Effects of the molecular weight of PEG on the properties of polyurethanes from a kraft lignin-PEG-MDI system. J. Appl. Polym. Sci. 41, 39-50.
[82] Sadeghifar, H., Wells, T., Le, R.K., Sadeghifar, F., Yuan, J.S., Jonas Ragauskas, A., 2017. Fractionation of organosolv lignin using acetone:water and properties of the obtained fractions. ACS Sustainable Chem. Eng. 5, 580-587. doi: 10.1021/acssuschemeng.6b01955
[83] Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K., 2012. Turning renewable resources into value-added polymer:development of lignin-based thermoplastic. Green Chem. 14, 3295. doi: 10.1039/c2gc35933b
[84] Saito, T., Perkins, J.H., Jackson, D.C., Trammel, N.E., Hunt, M.A., Naskar, A.K., 2013. Development of lignin-based polyurethane thermoplastics. RSC Adv. 3, 21832. doi: 10.1039/c3ra44794d
[85] Saito, T., Perkins, J.H., Vautard, F., Meyer, H.M., Messman, J.M., Tolnai, B., Naskar, A.K., 2014. Methanol fractionation of softwood kraft lignin:impact on the lignin properties. ChemSusChem 7, 221-228. doi: 10.1002/cssc.201300509
[86] Saraf, V.P., Glasser, W.G., 1984. Engineering plastics from lignin. Ⅲ. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci. 29, 1831-1841. doi: 10.1002/app.1984.070290534
[87] Saraf, V.P., Glasser, W.G., Wilkes, G.L., McGrath, J.E., 1985. Engineering plastics from lignin. Ⅵ. Structure-property relationships of PEG-containing polyurethane networks. J. Appl. Polym. Sci. 30, 2207-2224. doi: 10.1002/app.1985.070300533
[88] Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites:a review. Green Chem. 17, 4862-4887. doi: 10.1039/C5GC01066G
[89] Seyed Shahabadi, S.I., Kong, J.H., Lu, X.H., 2017. Aqueous-only, green route to self-healable, UV-resistant, and electrically conductive polyurethane/graphene/lignin nanocomposite coatings. ACS Sustainable Chem. Eng. 5, 3148-3157. doi: 10.1021/acssuschemeng.6b02941
[90] Sun, J.T., Li, H., Wang, C., Yuan, D., Stubbs, L.P., He, C.B., 2016a. The effect of residual SolventN, N'-dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy composites. Macromol. Chem. Phys. 217, 1065-1073. doi: 10.1002/macp.201500453
[91] Sun, J.T., Wang, C., Stubbs, L.P., He, C.B., 2017. Carboxylated lignin as an effective cohardener for enhancing strength and toughness of epoxy. Macromol. Mater. Eng. 302, 1700341. doi: 10.1002/mame.201700341
[92] Sun, J.T., Wang, C., Yeo, J.C.C., Yuan, D., Li, H., Stubbs, L.P., He, C.B., 2016b. Lignin epoxy composites:preparation, morphology, and mechanical properties. Macromol. Mater. Eng. 301, 328-336. doi: 10.1002/mame.201500310
[93] Sun, Y., Yang, L.P., Lu, X.H., He, C.B., 2015. Biodegradable and renewable poly(lactide)-lignin composites:synthesis, interface and toughening mechanism. J. Mater. Chem. A 3, 3699-3709. doi: 10.1039/C4TA05991C
[94] Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R., 2014. Progress in green polymer composites from lignin for multifunctional applications:a review. ACS Sustainable Chem. Eng. 2, 1072-1092. doi: 10.1021/sc500087z
[95] Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1996. Fractionation of alcell® lignin by sequential solvent extraction. J. Wood Chem. Technol. 16, 139-154. doi: 10.1080/02773819608545815
[96] Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1997. Polyurethanes from alcell® lignin. Biomass Bioenergy 13, 125-132. doi: 10.1016/S0961-9534(97)00030-5
[97] Upton, B.M., Kasko, A.M., 2016. Strategies for the conversion of lignin to high-value polymeric materials:review and perspective. Chem. Rev. 116, 2275-2306. doi: 10.1021/acs.chemrev.5b00345
[98] Vanderlaan, M.N., Thring, R.W., 1998. Polyurethanes from Alcell® lignin fractions obtained by sequential solvent extraction. Biomass Bioenergy 14, 525-531. doi: 10.1016/S0961-9534(97)10058-7
[99] Wang, C., Kelley, S.S., Venditti, R.A., 2016. Lignin-based thermoplastic materials. ChemSusChem 9, 770-783. doi: 10.1002/cssc.201501531
[100] Wang, H., Lin, W.S., Qiu, X.Q., Fu, F.B., Zhong, R.S., Liu, W.F., Yang, D.J., 2018a. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane. ACS Sustainable Chem. Eng. 6, 3696-3705. doi: 10.1021/acssuschemeng.7b04038
[101] Wang, H., Qiu, X.Q., Liu, W.F., Fu, F.B., Yang, D.J., 2017. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating. Ind. Eng. Chem. Res. 56, 11133-11141. doi: 10.1021/acs.iecr.7b02425
[102] Wang, S.X., Yang, L.P., Stubbs, L.P., Li, X., He, C.B., 2013a. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for Lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275-12282. doi: 10.1021/am4043867
[103] Wang, S.Y., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019a. Highly resilient lignin-containing polyurethane foam. Ind. Eng. Chem. Res. 58, 496-504. doi: 10.1021/acs.iecr.8b05072
[104] Wang, Y.Y., Li, M., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2018b. Fast fractionation of technical lignins by organic cosolvents. ACS Sustainable Chem. Eng. 6, 6064-6072. doi: 10.1021/acssuschemeng.7b04546
[105] Wang, Y.Y., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2019b. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation. ACS Appl. Polym. Mater. 1, 1672-1679. doi: 10.1021/acsapm.9b00228
[106] Wang, Z.M., Yang, X.H., Zhou, Y.H., Liu, C.G., 2013b. Mechanical and thermal properties of polyurethane films from peroxy-acid wheat straw lignin. BioResources 8, 3833-3843. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_3_3833_Wang_Mechanical_Thermal_Polyurethane_Film
[107] Wu, LeoC.F., Glasser, W.G., 1984. Engineering plastics from lignin. Ⅰ. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci. 29, 1111-1123. doi: 10.1002/app.1984.070290408
[108] Xiong, W.L., Qiu, X.Q., Yang, D.J., Zhong, R.S., Qian, Y., Li, Y.Y., Wang, H., 2017. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate. Chem. Eng. J. 326, 803-810. doi: 10.1016/j.cej.2017.05.041
[109] Xu, C.B., Ferdosian, F., 2017. Lignin-based polyurethane (PU) resins and foams. Green Chemistry and Sustainable Technology. Berlin, Heidelberg:Springer Berlin Heidelberg, 133-156.
[110] Xu, C.P., Arancon, R.A.D., Labidi, J., Luque, R., 2014. Lignin depolymerisation strategies:towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485-7500. doi: 10.1039/C4CS00235K
[111] Xue, B.L., Huang, P.L., Sun, Y.C., Li, X.P., Sun, R.C., 2017. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv. 7, 6123-6130. doi: 10.1039/C6RA26318F
[112] Xue, B.L., Wen, J.L., Sun, R.C., 2014. Lignin-based rigid polyurethane foam reinforced with pulp fiber:synthesis and characterization. ACS Sustainable Chem. Eng. 2, 1474-1480. doi: 10.1021/sc5001226
[113] Yang, D.J., Wang, S.Y., Zhong, R.S., Liu, W.F., Qiu, X.Q., 2019. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Front. Chem. Sci. Eng. 13, 59-69. doi: 10.1007/s11705-018-1712-0
[114] Yang, L., Wang, X.F., Cui, Y., Tian, Y.M., Chen, H.Z., Wang, Z.C., 2014a. Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym. Adv. Technol. 25, 1089-1098. doi: 10.1002/pat.3356
[115] Yang, Y., Deng, Y.H., Tong, Z., Wang, C.Y., 2014b. Renewable lignin-based xerogels with self-cleaning properties and superhydrophobicity. ACS Sustainable Chem. Eng. 2, 1729-1733. doi: 10.1021/sc500250b
[116] Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987a. Fractionation of kraft lignin by successive extraction with organic solvents. Ⅱ. thermal properties of kraft lignin fractions. Holzforschung 41, 171-176. doi: 10.1515/hfsg.1987.41.3.171
[117] Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987b. Kraft lignin in polyurethanes Ⅰ. Mechanical properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 34, 1187-1198. doi: 10.1002/app.1987.070340326
[118] Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1990. Kraft lignin in polyurethanes. Ⅱ. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 40, 1819-1832. doi: 10.1002/app.1990.070401102
[119] Yu, P., He, H., Jiang, C., Jia, Y.C., Wang, D.Q., Yao, X.J., Jia, D.M., Luo, Y.F., 2016. Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. J. Appl. Polym. Sci. 133, 42922. doi: 10.1002/app.42922
[120] Zhang, C.Q., Wu, H.C., Kessler, M.R., 2015a. High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 69, 52-57. doi: 10.1016/j.polymer.2015.05.046
[121] Zhang, L.N., Huang, J., 2001a. Effects of hard-segment compositions on properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 81, 3251-3259. doi: 10.1002/app.1780
[122] Zhang, L.N., Huang, J., 2001b. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 80, 1213-1219. doi: 10.1002/app.1206
[123] Zhang, N., Li, Z., Xiao, Y.N., Pan, Z., Jia, P.Y., Feng, G.D., Bao, C.Y., Zhou, Y.H., Hua, L.L., 2020. Lignin-based phenolic resin modified with whisker silicon and its ap-plication. J. Bioresour. Bioprod. 5, 69-77. http://www.sciencedirect.com/science/article/pii/S236996982030058X
[124] Zhang, Q.Q., Zhang, G.Y., Xu, J., Gao, C.H., Wu, Y.M., 2015b. Recent advances on ligin-derived polyurethane polymers. Rev. Adv. Mater. Sci. 40, 146-154. http://www.researchgate.net/publication/281653548_Recent_advances_on_ligin-derived_polyurethane_polymers
[125] Zhang, X.F., Kim, Y., Elsayed, I., Taylor, M., Eberhardt, T.L., Hassan, E.B., Shmulsky, R, 2019a. Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind. Crop. Prod. 141, 111797. doi: 10.1016/j.indcrop.2019.111797
[126] Zhang, Y., Liao, J.J., Fang, X.C., Bai, F.D., Qiao, K., Wang, L.M., 2017. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone). ACS Sustainable Chem. Eng. 5, 4276-4284. doi: 10.1021/acssuschemeng.7b00288
[127] Zhang, Y., Wang, J.Y., Fang, X.C., Liao, J.J., Zhou, X., Zhou, S.M., Bai, F.D., Peng, S.Z., 2019b. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films:Plasticization and degradation. Polymer 178, 121572. doi: 10.1016/j.polymer.2019.121572
[128] Zhang, Y.M., Yan, R., Ngo, T.D., Zhao, Q., Duan, J.C., Du, X.W., Wang, Y.L., Liu, B.J., Sun, Z.Y., Hu, W., Xie, H.M, 2019c. Ozone oxidized lignin-based polyurethane with improved properties. Eur. Polym. J. 117, 114-122. doi: 10.1016/j.eurpolymj.2019.05.006
[129] Zhou, W.P., Chen, F.G., Zhang, H., Wang, J., 2017. Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J. Wood Chem. Technol. 37, 323-333. doi: 10.1080/02773813.2017.1299185
[130] Zou, C., Ma, H.Z., Guo, Y.P., Guo, D.L., Xu, G.X., 2018. Catalytic depolymerization/degradation of alkali lignin by dual-component catalysts in supercritical ethanol. J. Bioresour. Bioprod. 3, 18-24. doi: 10.21967/jbb.v3i1.161