[1] Allou N B, Saikia P, Borah A, et al., 2017. Hybrid nanocomposites of layered double hydroxides:an update of their biological applications and future prospects. Colloid and Polymer Science, 295(5):725-747. DOI: 10.1007/s00396-017-4047-3.
[2] Avérous L, Pollet E, Sorrentino A, et al., 2012. Green nano-biocomposites. Environmental Silicate Nano-Biocomposites. London: Springer London: 1-11.
[3] Bai Y K, Mao L, Liu Y J, 2016. High temperature shape memory polyimide ionomer. Journal of Applied Polymer Science, 133(30):43630-43637. DOI: 10.1002/app.43630.
[4] Bharadwaj R K, 2001. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26):9189-9192. DOI: 10.1021/ma010780b.
[5] Bideau B, Bras J, Saini S, et al., 2016. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering:C, 69:977-984. DOI: 10.1016/j.msec.2016.08.005.
[6] Bideau B, Loranger E, Daneault C, 2018. Nanocellulose-polypyrrole-coated paperboard for food packaging application. Progress in Organic Coatings, 123:128-133. DOI: 10.1016/j.porgcoat.2018.07.003.
[7] Bugatti V, Costantino U, Gorrasi G, et al., 2010. Nano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications:mechanical and barrier properties. European Polymer Journal, 46(3):418-427. DOI:10.1016/j.eurpolymj. 2009.11.003.
[8] Choudalakis G, Gotsis A D, 2009. Permeability of polymer/clay nanocomposites:a review. European Polymer Journal, 45(4):967-984. DOI: 10.1016/j.eurpolymj.2009.01.027.
[9] Costantino U, Bugatti V, Gorrasi G, et al., 2009. New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Applied Materials & Interfaces, 1(3):668-677. DOI: 10.1021/am8001988.
[10] da Silva F A G Jr, Alcaraz-Espinoza J J, da Costa M M, et al., 2017. Synthesis and characterization of highly conductive polypyrrole-coated electrospun fibers as antibacterial agents. Composites Part B:Engineering, 129:143-151. DOI: 10.1016/j.compositesb.2017.07.080.
[11] Du P H, Xue B, Song Y H, et al., 2010. Fracture surface characteristics and impact properties of poly(butylene terephthalate). Polymer Bulletin, 64(2):185-196. DOI: 10.1007/s00289-009-0199-8.
[12] Gain O, Espuche E, Pollet E, et al., 2005. Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites:influence of the morphology and polymer/clay interactions. Journal of Polymer Science Part B:Polymer Physics, 43(2):205-214. DOI: 10.1002/polb.20316.
[13] Genovese L, Gigli M, Lotti N, et al., 2014. Biodegradable long chain aliphatic polyesters containing ether-linkages:synthesis, solid-state, and barrier properties. Industrial & Engineering Chemistry Research, 53(27):10965-10973. DOI: 10.1021/ie5017865.
[14] Gu Z M, Li C Z, Wang G C, et al., 2010. Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. Journal of Polymer Science Part B:Polymer Physics, 48(12):1329-1335. DOI: 10.1002/polb.22031.
[15] Huang H D, Ren P G, Xu J Z, et al., 2014. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 464:110-118. DOI: 10.1016/j.memsci.2014.04.009.
[16] Kim H J, Kim D G, Yoon H, et al., 2015a. Polyphenol/FeIIIComplex coated membranes having multifunctional properties prepared by a one-step fast assembly. Advanced Materials Interfaces, 2(14):1500298. DOI:10.1002/admi. 201500298.
[17] Kim S, Kwak S, Lee S, et al., 2015b. One-step functionalization of zwitterionic poly[(3-(methacryloylamino)propyl)dimethyl (3-sulfopropyl)ammonium hydroxide] surfaces by metal-polyphenol coating. Chemical Communications, 51(25):5340-5342. doi: 10.1039/C4CC08609K
[18] Layek R K, Das A K, Park M J, et al., 2015. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly (vinylidene fluoride) composites. Carbon, 81:329-338. DOI:10.1016/j.carbon. 2014.09.065.
[19] Li J Z, Song Z W, Gao L B, et al., 2016. Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polymer Bulletin, 73(8):2121-2128. DOI: 10.1007/s00289-015-1597-8.
[20] Li M, Li W G, Liu J, et al., 2013. Preparation and characterization of PPy with methyl orange as soft template. Journal of Materials Science:Materials in Electronics, 24(3):906-910. DOI: 10.1007/s10854-012-0847-x.
[21] Liau C P, Bin Ahmad M, Shameli K, et al., 2014. Preparation and characterization of polyhydroxybutyrate/polycaprolactone nanocomposites. The Scientific World Journal, 2014:1-9. DOI: 10.1155/2014/572726.
[22] Liu F J, Yuan Y, Li L, et al., 2015. Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Composites Part B:Engineering, 69:232-236. DOI:10.1016/j.compositesb. 2014.09.030.
[23] Liu Y J, Mao L, Fan S H, 2014. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 layered double hydroxide as a synergistic agent. Journal of Applied Polymer Science, 131(17):8964-8973. DOI: 10.1002/app.40736.
[24] Ludueña L N, Alvarez V A, Vazquez A, 2007. Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering:A, 460/461:121-129. DOI:10.1016/j.msea. 2007.01.104.
[25] Mao L, Liu J Y, Zheng S J, et al., 2019. Mussel-inspired nano-silver loaded layered double hydroxides embedded into a biodegradable polymer matrix for enhanced mechanical and gas barrier properties. RSC Advances, 9(10):5834-5843. DOI: 10.1039/c8ra09602c.
[26] Mao L, Liu Y J, Bai Y K, et al., 2017a. Poly(ε-caprolactone) nanocomposites with layered double hydroxides modified by in situ grafting polymerization:structure characterization and barrier properties. Journal of Applied Polymer Science, 134(38):45320. DOI: 10.1002/app.45320.
[27] Mao L, Liu Y J, Wu H Q, et al., 2017b. Poly(ε-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide:simultaneous enhancement of mechanical and barrier properties. Applied Clay Science, 150:202-209. DOI: 10.1016/j.clay.2017.09.031.
[28] Mao L, Wu H Q, Liu Y J, et al., 2018. Enhanced mechanical and gas barrier properties of poly(ε-caprolactone) nanocomposites filled with tannic acid-Fe(Ⅲ) functionalized high aspect ratio layered double hydroxides. Materials Chemistry and Physics, 211:501-509. DOI: 10.1016/j.matchemphys.2018.03.008.
[29] Peng H D, Han Y, Liu T X, et al., 2010. Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1/2):1-7. DOI: 10.1016/j.tca.2010.01.009.
[30] Pucciariello R, Tammaro L, Villani V, et al., 2007. New nanohybrids of poly(ε-caprolactone) and a modified Mg/Al hydrotalcite:mechanical and thermal properties. Journal of Polymer Science Part B:Polymer Physics, 45(8):945-954. DOI: 10.1002/polb.21106.
[31] Pucciariello R, Villani V, Giammarino G, 2012. Crystallisation of nanohybrids of poly(ε-caprolactone) and hydrotalcites containing antimicrobial species. Plastics, Rubber and Composites, 41(1):18-22. DOI:10.1179/1743289811y. 0000000014.
[32] Seoane I T, Luzi F, Puglia D, et al., 2018. Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybutyrate/nanocellulose coatings. Journal of Applied Polymer Science, 135(48):46872. DOI: 10.1002/app.46872.
[33] Shafiei S S, Shavandi M, Ahangari G, et al., 2016. Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Applied Clay Science, 127/128:52-63. DOI: 10.1016/j.clay.2016.04.004.
[34] Tan B, Thomas N L, 2016. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514:595-612. DOI:10.1016/j.memsci. 2016.05.026.
[35] Taviot-Guého C, Prévot V, Forano C, et al., 2018. Tailoring hybrid layered double hydroxides for the development of innovative applications. Advanced Functional Materials, 28(27):1703868. DOI: 10.1002/adfm.201703868.
[36] Veschambres C, Halma M, Bourgeat-Lami E, et al., 2016. Layered double hydroxides:efficient fillers for waterborne nanocomposite films. Applied Clay Science, 130:55-61. DOI: 10.1016/j.clay.2016.01.018.
[37] Wang X T, Liang Z Q, Zhang F Z, et al., 2013. Enhanced catalytic performances of Ag nanoparticles supported on layered double hydroxide for styrene epoxidation. Journal of Materials Science, 48(17):5899-5903. DOI: 10.1007/s10853-013-7385-7.
[38] Wu J R, Huang G S, Li H, et al., 2013. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer, 54(7):1930-1937. DOI: 10.1016/j.polymer.2013.01.049.
[39] Xu B, Zheng Q, Song Y H, et al., 2006. Calculating barrier properties of polymer/clay nanocomposites:effects of clay layers. Polymer, 47(8):2904-2910. DOI:10.1016/j.polymer. 2006.02.069.
[40] Xu G N, Qiao X L, Qiu X L, et al., 2011. Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. Journal of Materials Science & Technology, 27(8):685-690. DOI: 10.1016/s1005-0302(11)60126-6.
[41] Zare-Shahabadi A, Shokuhfar A, Ebrahimi-Nejad S, et al., 2011. Modeling the stiffness of polymer/layered silicate nanocomposites:more accurate predictions with consideration of exfoliation ratio as a function of filler content. Polymer Testing, 30(4):408-414. DOI:10.1016/j.polymertesting. 2011.02.009.
[42] Zhang Z, Zhang J, Zhang B L, et al., 2013. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphenenanosheets as antibacterial materials. Nanoscale, 5(1):118-123. DOI: 10.1039/c2nr32092d.
[43] Zhao S, Li J H, 2015. Silver-cobalt oxides derived from silver nanoparticles deposited on layered double hydroxides for methane combustion. ChemCatChem, 7(13):1966-1974. DOI: 10.1002/cctc.201500254.