[1] Barrett, C.J., Chheda, J.N., Huber, G.W., Dumesic, J.A., 2006. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl. Catal. B:Environ. 66, 111-118. doi: 10.1016/j.apcatb.2006.03.001
[2] Bohre, A., Dutta, S., Saha, B., Abu-Omar, M.M., 2015a. Upgrading furfurals to drop-in biofuels:an overview. ACS Sustainable Chem. Eng. 3, 1263-1277. doi: 10.1021/acssuschemeng.5b00271
[3] Bohre, A., Saha, B., Abu-Omar, M.M., 2015b. Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal-acid catalysts. ChemSusChem 8, 4022-4029. doi: 10.1002/cssc.201501136
[4] Cara, C., Rombi, E., Musinu, A., Mameli, V., Ardu, A., Sanna Angotzi, M., Atzori, L., Niznansky, D., Xin, H.L., Cannas, C., 2017. MCM-41 support for ultrasmall γ-Fe2O3 nanoparticles for H2S removal. J. Mater. Chem. A 5, 21688-21698. doi: 10.1039/C7TA03652C
[5] Chang, C.C., Green, S.K., Williams, C.L., Dauenhauer, P.J., Fan, W., 2014. Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem. 16, 585-588. doi: 10.1039/C3GC40740C
[6] Chen, W., Li, X., Tang, Y., Zhou, J., Wu, D., Wu, Y., Li, L., 2018. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation. J. Hazard Mater. 346, 226-233. doi: 10.1016/j.jhazmat.2017.12.036
[7] Chiang, H.L., Wu, F.Y., Huang, P.H., Lee, T.Y., 2018. Characteristics of acetylene cracking on MCM-41 to form carbon materials and their exhaust emission. Microporous Mesoporous Mater. 268, 100-108. doi: 10.1016/j.micromeso.2018.04.006
[8] Faba, L., Díaz, E., Ordóñez, S., 2011. Performance of bifunctional Pd/MxNyO (M=Mg, Ca; N=Zr, Al) catalysts for aldolization-hydrogenation of furfural-acetone mixtures. Catal. Today 164, 451-456. doi: 10.1016/j.cattod.2010.11.032
[9] Faba, L., Díaz, E., Ordóñez, S., 2012. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl. Catal. B:Environ. 113/114, 201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9cce0e9a0a90c12655cb10423ddae68
[10] Gou, J.S., Wang, Z.P., Li, C., Qi, X.D., Vattipalli, V., Cheng, Y.T., Huber, G., Conner, W.C., Dauenhauer, P.J., Mountziaris, T.J., Fan, W., 2017. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chem. 19, 3549-3557. doi: 10.1039/C7GC01395G
[11] Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A., 2005. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446-1450. doi: 10.1126/science.1111166
[12] Kruger, J.S., Nikolakis, V., Vlachos, D.G., 2012. Carbohydrate dehydration using porous catalysts. Curr. Opin. Chem. Eng. 1, 312-320. doi: 10.1016/j.coche.2012.06.003
[13] Kubička, D., Kubičková, I., Čejka, J., 2013. Application of molecular sieves in transformations of biomass and biomass-derived feedstocks. Catal. Rev. 55, 1-78. doi: 10.1080/01614940.2012.685811
[14] Lewis, J.D., van de Vyver, S., Roman-Leshkov, Y., 2015. ChemInform abstract: acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. ChemInform 46, no.
[15] Li, H., Yang, S., Riisager, A., Pandey, A., Sangwan, R.S., Saravanamurugan, S., Luque, R., 2016. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem. 18, 5701-5735. doi: 10.1039/C6GC02415G
[16] Muller, P., Burt, S.P., Love, A.M., McDermott, W.P., Wolf, P., Hermans, I., 2016. Mechanistic study on the Lewis acid catalyzed synthesis of 1, 3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal. 6, 6823-6832. doi: 10.1021/acscatal.6b01642
[17] O'Neill, R.E., Vanoye, L., de de Bellefon, C., Aiouache, F., 2014. Aldol-condensation of furfural by activated dolomite catalyst. Appl. Catal. B:Environ. 144, 46-56. doi: 10.1016/j.apcatb.2013.07.006
[18] Sádaba, I., Ojeda, M., Mariscal, R., Fierro, J.L.G., Granados, M.L., 2011. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl. Catal. B:Environ. 101, 638-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1922a2770da3d2ccb75a66cff3424c4f
[19] Sádaba, I., Ojeda, M., Mariscal, R., Richards, R., López Granados, M., 2012. Preparation and characterization of Mg-Zr mixed oxide aerogels and their application as aldol condensation catalysts. Chemphyschem 13, 3282-3292. doi: 10.1002/cphc.201200440
[20] Salviano, A.B., Santos, M.R.D., Araújo, L.M., Ardisson, J.D., Lago, R.M., Araujo, M.H., 2018. Iron oxide nanoparticles supported on mesoporous MCM-41 for efficient adsorption of hazardous β-lactamic antibiotics. Water Air Soil Pollut. 229, 1-14. doi: 10.1007/s11270-017-3647-3
[21] Savidha, R., Pandurangan, A., Palaichamy, M., Murugesan, V., 2003. Vapor-phase isopropylation of phenol over Fe-containing Al-MCM-41 molecular sieves. Catal. Lett. 91, 49-61. doi: 10.1023/B:CATL.0000006317.76045.1f
[22] Shen, W.Q., Tompsett, G.A., Hammond, K.D., Xing, R., Dogan, F., Grey, C.P., Conner, W.C. Jr, Auerbach, S.M., Huber, G.W., 2011. Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl. Catal. A:Gen. 392, 57-68. doi: 10.1016/j.apcata.2010.10.023
[23] Stöcker, M., 2008. Biofuels and biomass-to-liquid fuels in the biorefinery:catalytic conversion of lignocellulosic biomass using porous material. Angewandte Chemie International Edition, 47, 9200-9211. doi: 10.1002/anie.200801476
[24] Su, M.X., Li, W.Z., Zhang, T.W., Xin, H.S., Li, S., Fan, W., Ma, L.L., 2017. Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts. Catal. Sci. Technol. 7, 3555-3561. doi: 10.1039/C7CY01028A
[25] Tolborg, S., Meier, S., Saravanamurugan, S., Fristrup, P., Taarning, E., Sádaba, I., 2016. Shape-selective valorization of Biomass-derived glycolaldehyde using Tin-containing zeolites. ChemSusChem 9, 3054-3061. doi: 10.1002/cssc.201600757
[26] Ulu, A., Ozcan, I., Koytepe, S., Ates, B., 2018. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization. Int. J. Biol. Macromol. 115, 1122-1130. doi: 10.1016/j.ijbiomac.2018.04.157
[27] van de Vyver, S., Odermatt, C., Romero, K., Prasomsri, T., Román-Leshkov, Y., 2015. Solid Lewis acids catalyze the carbon-carbon coupling between carbohydrates and formaldehyde. ACS Catal. 5, 972-977. doi: 10.1021/cs5015964
[28] Wang, Y., Lewis, J.D., Romanleshkov, Y., 2016. Synthesis of itaconic acid ester analogues via self-aldol condensation of ethyl pyruvate catalyzed by hafnium BEA zeolites. ACS Catal. 6, 2739-2744. doi: 10.1021/acscatal.6b00561
[29] West, R.M., Liu, Z.Y., Peter, M., G rtner, C.A., Dumesic, J.A., 2008. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J. Mol. Catal. A:Chem. 296, 18-27. doi: 10.1016/j.molcata.2008.09.001
[30] Xing, R., Subrahmanyam, A.V., Olcay, H., Qi, W., van Walsum, G.P., Pendse, H.P., Huber, G.W., 2010. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem. 12, 1933-1946. doi: 10.1039/c0gc00263a
[31] Xu, D.Y., Sun, X.W., Zhao, X., Huang, L.X., Qian, Y., Tao, X.M., Guo, Q.J., 2018a. Heterogeneous Fenton degradation of rhodamine B in aqueous solution using Fe-loaded mesoporous MCM-41 as catalyst. Water Air Soil Pollut. 229, 1-9. doi: 10.1007/s11270-017-3647-3
[32] Xu, W., Ollevier, T., Kleitz, F., 2018b. Iron-modified mesoporous silica as an efficient solid Lewis acid catalyst for the mukaiyama aldol reaction. ACS Catal. 8, 1932-1944. doi: 10.1021/acscatal.7b03485
[33] Yang, J.F., Li, N., Li, S.S., Wang, W.T., Li, L., Wang, A.Q., Wang, X.D., Cong, Y., Zhang, T., 2014. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem. 16, 4879-4884. doi: 10.1039/C4GC01314J
[34] Zhang, Z.X., Hu, M.N., Mei, Q.M., Tang, J.H., Fei, Z.Y., Chen, X., Liu, Q., Cui, M.F., Qiao, X., 2019. Iron-doped mesoporous silica, Fe-MCM-41, as an active Lewis acid catalyst for acidolysis of benzyl chloride with fatty acid. J. Porous Mater. 26, 261-269. doi: 10.1007/s10934-018-0645-9
[35] Zinoviev, S., Müller-Langer. F., Das. P., Bertero, N., Fornasiero P., Kaltschmitt, M., Centi, G., Miertus S., 2010. Next-generation biofuels:survey of emerging technologies and sustainability issues. ChemSusChem, 3:1106-1133. doi: 10.1002/cssc.201000052