[1] Aimene, Y.E., Nairn, J.A., 2015. Simulation of transverse wood compression using a large-deformation, hyperelastic-plastic material model. Wood Sci. Technol. 49, 21-39. doi: 10.1007/s00226-014-0676-6
[2] Ando, K., Onda, H., 1999. Mechanism for deformation of wood as a honeycomb structure Ⅰ:effect of anatomy on the initial deformation process during radial compression. J. Wood Sci. 45, 120-126. doi: 10.1007/BF01192328
[3] Bodig, J., 1963. The peculiarity of compression of conifers in radial direction. Forest Products Journal 13, 438.
[4] Bodig, J., 1965. The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Products Journal 15, 197-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1545968307309473
[5] Bodig, J., 1966. Stress-strain relationship for wood in transverse compression. Journal of Materials. 1, 645-666. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2258cfe8d258cb66d2fd58e7bd4c98c
[6] Dai, C.P., Steiner, P.R., 1993. Compression behavior of randomly formed wood flake mats. Wood and Fiber Science:Journal of the Society of Wood Science and Technology 25, 349-358. http://agris.fao.org/agris-search/search.do?recordID=US9429727
[7] Deben research, 2003. Deben UK Limited, Edmunds, Suffolk, U.K.
[8] Easterling, K., Harryson, E., Gibson, L., Ashby, M., 1982. On the mechanics of balsa and other woods. Proceedings Royal Soceity London A 383, 31-41. doi: 10.1098/rspa.1982.0118
[9] Ellis, S., Steiner, P., 2002. The behaviour of five wood species in compression. IAWA J. 23, 201-211. doi: 10.1163/22941932-90000298
[10] Erickson, H., 1955. Tangential shrinkage of serial sections within annual rings of Douglas-fir and western redcedar. Forest Products Journal 5, 241-250.
[11] Gibson, L.J.A.A., Ashby, M., 1988. Cellular solids:structure and properties. New York:Pergamon Press, 357.
[12] Kennedy, R., 1968. Wood in transverse compression:influence of some anatomical variables and density on behavior. Forest Products Journal 18, 36-40. http://ci.nii.ac.jp/naid/10017428743
[13] Kunesh, R., 1961. The inelastic behavior of wood:a new concept for improved panel forming processes. Forest Products Journal 11, 395-406.
[14] Kunesh, R., 1968. Strength and elastic properties of wood in transverse compression. Forest Products Journal 18, 65-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/073168449401300905
[15] Kutnar, A., Kamke, F.A., 2013. Transverse compression behavior of Douglas-fir (Pseudotsuga menziesii) in saturated steam environment. European Journal of Wood and Wood Products 71, 443-449. doi: 10.1007/s00107-013-0698-z
[16] Panshin, A., de Zeeuw, C., 1980. Textbook of wood technology. New York:McGraw-Hill Inc.
[17] Polocoşer, T., Kasal, B., Stöckel, F., 2017. State-of-the-art:intermediate and high strain rate testing of solid wood. Wood Sci. Technol. 51, 1479-1534. doi: 10.1007/s00226-017-0925-6
[18] Schniewind, A., 1959. Transverse anisotropy of wood:a function of gross anatomic structure. Forest Products Journal 9, 350-359. http://www.researchgate.net/publication/281610872_Transverse_anisotropy_of_wood_A_function_of_gross_anatomic_structure
[19] Tabarsa, T., Chui, Y.H., 2000. Stress-strain response of wood under radial compression. Part Ⅰ. Test method and influences of cellular properties. Wood and Fiber Science 32, 144-152. http://www.cabdirect.org/abstracts/20000610039.html
[20] Tabarsa, T., Chui, Y.H., 2001. Characterizing microscopic behavior of wood under transverse compression. Part Ⅱ. Effect of species and loading direction. Wood and Fiber Science 33, 223-232. http://ci.nii.ac.jp/naid/80012318875
[21] Wolcott, M., Kamke, F.A., Dillard, D.A., 1994. Fundamental aspects of wood deformation pertaining to manufacture of wood-based composites. Wood and Fiber Science 26, 496-511. http://agris.fao.org/openagris/search.do?recordID=US9535289
[22] Youngs, R., 1957. Mechanical properties of red oak related to drying. Forest Products Journal 9, 315-324.
[23] Zhong, W.Z., Rusinek, A., Jankowiak, T., Huang, X.C., Abed, F., 2014. Experimental and numerical investigation on compression orthotropic properties of spruce wood in axial and transverse loading directions. Engineering Transactions 62, 381-401. http://www.researchgate.net/publication/271512541_Experimental_and_Numerical_Investigation_on_Compression_Orthotropic_Properties_of_Spruce_Wood_in_Axial_and_Transverse_Loading_Directions
[24] Zhou, C., Smith, G.D., Dai, C.P., 2009. Characterizing hydro-thermal compression behavior of aspen wood strands. Holzforschung 63, 609-617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/HF.2009.111