[1] Abrate S, 1997. Localized impact on sandwich structures with laminated facings. Applied Mechanics Reviews, 50(2):69. DOI: 10.1115/1.3101689.
[2] Chen H L, Zheng Q, Zhao L, et al., 2012. Mechanical property of lattice truss material in sandwich panel including strut flexural deformation. Composite Structures, 94(12):3448- 3456. DOI: 10.1016/j.compstruct.2012.06.004.
[3] Côté F, Deshpande V S, Fleck N A, et al., 2004. The out-of- plane compressive behavior of metallic honeycombs. Materials Science and Engineering:A, 380(1/2):272-280. DOI: 10.1016/j.msea.2004.03.051.
[4] Côté F, Deshpande V, Fleck N, 2006. The shear response of metallic square honeycombs. Journal of Mechanics of Mate-rials and Structures, 1(7):1281-1299. DOI:10.2140/jomms. 2006.1.1281.
[5] Côté F, Russell B P, Deshpande V S, et al., 2009. The through- thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core. Journal of Applied Mechanics, 76(6):061004. DOI: 10.1115/1.3086436.
[6] Deshpande V S, Fleck N A, Ashby M F, 2001. Effective proper-ties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8):1747-1769. DOI: 10.1016/s0022-5096(01)00010-2.
[7] Edgars L, Kaspars Z, Kaspars K, 2017. Structural performance of wood based sandwich panels in four point bending. Procedia Engineering, 172:628-633. DOI:10.1016/j.proeng. 2017.02.073.
[8] Evans A G, Hutchinson J W, Fleck N A, et al., 2001. The topo-logical design of multifunctional cellular metals. Progress in Materials Science, 46(3/4):309-327. DOI:10.1016/s0079- 6425(00)00016-5.
[9] Fan H L, Meng F H, Yang W, 2006. Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials. Archive of Applied Mechanics, 75(10/11/12):635-647. DOI: 10.1007/s00419-006-0032-x.
[10] Fan H L, Yang L, Sun F F, et al., 2013. Compression and bend-ing performances of carbon fiber reinforced lattice-core sandwich composites. Composites Part A:Applied Science and Manufacturing, 52:118-125. DOI: 10.1016/j.composi-tesa.2013.04.013.
[11] Finnegan K, Kooistra G, Wadley H N G, et al., 2007. The com-pressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12):1264-1272. DOI: 10.3139/146.101594.
[12] Jin M M, Hu Y C, Wang B, 2015. Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures. Composite Structures, 124:337-344. DOI: 10.1016/j.compstruct.2015.01.033.
[13] Kooistra G W, Queheillalt D T, Wadley H N G, 2008. Shear behavior of aluminum lattice truss sandwich panel structures. Materials Science and Engineering:A, 472(1/2):242-250. DOI: 10.1016/j.msea.2007.03.034.
[14] Kooistra G, 2004. Compressive behavior of age hardenable tet-rahedral lattice truss structures made from aluminium. Acta Materialia, 52(14):4229-4237. DOI:10.1016/j.actamat.2004. 05.039.
[15] Lee B K, Kang K J, 2010. A parametric study on compressive characteristics of Wire-woven bulk Kagome truss cores. Composite Structures, 92(2):445-453. DOI:10.1016/j. compstruct.2009.08.029.
[16] Qin Q H, Wang T J, 2013. Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect. Composite Structures, 96:346-356. DOI: 10.1016/j.compstruct.2012.09.024.
[17] Vasiliev V V, Barynin V A, Rasin A F, 2001. Anisogrid lattice structures——survey of development and application. Com-posite Structures, 54(2/3):361-370. DOI:10.1016/s0263- 8223(01)00111-8.
[18] Vasiliev V V, Barynin V A, Razin A F, 2012. Anisogrid compo-site lattice structures——Development and aerospace appli-cations. Composite Structures, 94(3):1117-1127. DOI:10. 1016/j.compstruct.2011.10.023.
[19] Vasiliev V V, Razin A F, 2006. Anisogrid composite lattice structures for spacecraft and aircraft applications. Composite Structures, 76(1/2):182-189. DOI:10.1016/j.compstruct. 2006.06.025.
[20] Wang B, Wu L Z, Ma L, et al., 2009. Fabrication and testing of carbon fiber reinforced truss core sandwich panels. Journal of Materials Science & Technology, 25(4):547-550. DOI: 10.3321/j.issn:1005-0302.2009.04.025.
[21] Wang B, Zhang G Q, He Q L, et al., 2014. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores. Materials & Design, 55:591-596. DOI: 10.1016/j.matdes.2013.10.025.
[22] Xiong J, Ma L, Wu L Z, et al., 2010. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Composite Structures, 92(11):2695-2702. DOI: 10.1016/j.compstruct.2010.03.010.
[23] Xiong J, Vaziri A, Ma L, et al., 2012. Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Composite Structures, 94(2):793-801. DOI: 10.1016/j.compstruct.2011.09.018.
[24] Yan C Z, Hao L, Hussein A, et al., 2014. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 55:533-541. DOI: 10.1016/j.matdes.2013.10.027.
[25] Zheng J J, Zhao L, Fan H L, 2012. Energy absorption mecha-nisms of hierarchical woven lattice composites. Composites Part B:Engineering, 43(3):1516-1522. DOI:10.1016/j. compositesb.2011.08.034.