[1] Abdel-Rahman, R. M. , Hrdina, R. , Abdel-Mohsen, A. M. , Fouda, M. M. G. , Soliman, A. Y. , Mohamed, F. K. , Mohsin, K. , Pinto, T. D. , 2015. Chitin and chitosan from Brazilian Atlantic Coast: isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107-120. doi: 10.1016/j.ijbiomac.2015.06.027
[2] Abid, S. , Hussain, T. , Nazir, A. , Zahir, A. , Ramakrishna, S. , Hameed, M. , Khenoussi, N. , 2019. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol. 135, 1222-1236. doi: 10.1016/j.ijbiomac.2019.06.022
[3] Adeli, H. , Khorasani, M. T. , Parvazinia, M. , 2019. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 122, 238-254. doi: 10.1016/j.ijbiomac.2018.10.115
[4] Ahmadi, F. , Oveisi, Z. , Samani, S. M. , Amoozgar, Z. , 2015. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1-16. http://europepmc.org/abstract/MED/26430453
[5] Ahmed, T. A. , Aljaeid, B. M. , 2016. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 10, 483-507. http://www.tandfonline.com/servlet/linkout?suffix=CIT0116&dbid=8&doi=10.1080%2F17425247.2016.1178232&key=26869768
[6] Annabi, N. , Mithieux, S. M. , Weiss, A. S. , Dehghani, F. , 2009. The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30, 1-7. doi: 10.1016/j.biomaterials.2008.09.031
[7] Archana, D. , Dutta, J. , Dutta, P. K. , 2013. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 57, 193-203. doi: 10.1016/j.ijbiomac.2013.03.002
[8] Azad, A. K. , Sermsintham, N. , Chandrkrachang, S. , Stevens, W. F. , 2004. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. Part B: Appl. Biomater. 69B, 216-222. doi: 10.1002/jbm.b.30000
[9] Bagher, Z. , Ehterami, A. , Safdel, M. H. , Khastar, H. , Semiari, H. , Asefnejad, A. , Davachi, S. M. , Mirzaii, M. , Salehi, M. , 2020. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug. Deliv. Sci. Technol. 55, 101379. doi: 10.1016/j.jddst.2019.101379
[10] Balan, V. , Verestiuc, L. , 2014. Strategies to improve chitosan hemocompatibility: a review. Eur. Polym. J. 53, 171-188. doi: 10.1016/j.eurpolymj.2014.01.033
[11] Basseri, H. , Bakhtiyari, R. , Hashemi, S. J. , Baniardelani, M. , Shahraki, H. , Hosainpour, L. , 2019. Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 56, 1208-1214. doi: 10.1093/jme/tjz082
[12] Behera, S. S. , Das, U. , Kumar, A. , Bissoyi, A. , Singh, A. K. , 2017. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. Int. J. Biol. Macromol. 98, 329-340. doi: 10.1016/j.ijbiomac.2017.02.017
[13] Bellini, M. Z. , Caliari-Oliveira, C. , Mizukami, A. , Swiech, K. , Covas, D. T. , Donadi, E. A. , Oliva-Neto, P. , Moraes, A. M. , 2015. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J. Biomater. Appl. 29, 1155-1166. doi: 10.1177/0885328214553959
[14] Berger, L. R. R. , Stamford, N. P. , Willadino, L. G. , Laranjeira, D. , de Lima, M. A. B. , Malheiros, S. M. M. , de Oliveira, W. J. , Stamford, T. C. M. , 2016. Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biol. Control. 92, 45-54. doi: 10.1016/j.biocontrol.2015.09.006
[15] Binder, J. B. , Raines, R. T. , 2009. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979-1985. doi: 10.1021/ja808537j
[16] Blakeney, B. A. , Tambralli, A. , Anderson, J. M. , Andukuri, A. , Lim, D. J. , Dean, D. R. , Jun, H. W. , 2011. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomater. 32, 1583-1590. doi: 10.1016/j.biomaterials.2010.10.056
[17] Bolat, Y. , Bilgin, Ş. , Günlü, A. , Izci, L. , Koca, S. B. , Çetinkaya, S. , Koca, H. U. , 2010. Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell. Pak. Vet. J. 30, 227-231. http://www.cabdirect.org/abstracts/20103310590.html
[18] Boyce, S. T. , Lalley, A. L. , 2018. Tissue engineering of skin and regenerative medicine for wound care. Burn. Trauma 6, 4.
[19] Campos, M. G. N. , Mei, L. H. I. , Santos, A. R. , 2015. Sorbitol-plasticized and neutralized chitosan membranes as skin substitutes. Mat. Res. 18, 781-790. doi: 10.1590/1516-1439.025015
[20] Cardoso, A. M. , de Oliveira, E. G. , Coradini, K. , Bruinsmann, F. A. , Aguirre, T. , Lorenzoni, R. , Barcelos, R. C. S. , Roversi, K. , Rossato, D. R. , Pohlmann, A. R. , Guterres, S. S. , Burger, M. E. , Beck, R. C. R. , 2019. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng. : C 96, 205-217. doi: 10.1016/j.msec.2018.11.013
[21] Chang, S. H. , Lin, H. T. V. , Wu, G. J. , Tsai, G. J. , 2015. pH effects on solubility, Zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 134, 74-81. doi: 10.1016/j.carbpol.2015.07.072
[22] Chang, S. H. , Wu, C. H. , Tsai, G. J. , 2018. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym. 181, 1026-1032. doi: 10.1016/j.carbpol.2017.11.047
[23] Chen, C. L. , Wang, L. C. , Zhu, B. , Zhou, Z. Q. , El-Hout, S. I. , Yang, J. , Zhang, J. , 2021. 2, 5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism. J. Energy Chem. 54, 528-554. doi: 10.1016/j.jechem.2020.05.068
[24] Chen, H. L. , Huang, J. , Yu, J. H. , Liu, S. Y. , Gu, P. , 2011. Electrospun chitosan-graft-poly (ɛ -caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48, 13-19. doi: 10.1016/j.ijbiomac.2010.09.019
[25] Chen, Y. , Qiu, H. Y. , Dong, M. H. , Cheng, B. , Jin, Y. G. , Tong, Z. R. , Li, P. W. , Li, S. D. , Yang, Z. M. , 2019. Preparation of hydroxylated lecithin complexed iodine/carboxymethyl chitosan/sodium alginate composite membrane by microwave drying and its applications in infected burn wound treatment. Carbohydr. Polym. 206, 435-445. doi: 10.1016/j.carbpol.2018.10.068
[26] Cheung, R. , Ng, T. , Wong, J. , Chan, W. , 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13, 5156-5186. doi: 10.3390/md13085156
[27] Chien, P. J. , Sheu, F. , Lin, H. R. , 2007. Quality assessment of low molecular weight chitosan coating on sliced red pitayas. J. Food Eng. 79, 736-740. doi: 10.1016/j.jfoodeng.2006.02.047
[28] Chung, M. J. , Park, J. K. , Park, Y. I. , 2012. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int. Immunopharmacol. 12, 453-459. doi: 10.1016/j.intimp.2011.12.027
[29] Cook, J. P. , Goodall, G. W. , Khutoryanskaya, O. V. , Khutoryanskiy, V. V. , 2012. Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol. Rapid Commun. 33, 332-336. doi: 10.1002/marc.201100742
[30] Dash, M. , Chiellini, F. , Ottenbrite, R. M. , Chiellini, E, 2011. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981-1014 doi: 10.1016/j.progpolymsci.2011.02.001
[31] de Isla, N. , Huseltein, C. , Jessel, N. , Pinzano, A. , Decot, V. , Magdalou, J. , Bensoussan, D. , Stoltz, J. F. , 2010. Introduction to tissue engineering and application for cartilage engineering. Biomed. Mater. Eng. 20, 127-133. http://www.ncbi.nlm.nih.gov/pubmed/20930320
[32] de Lima, J. M. , Sarmento, R. R. , de Souza, J. R. , Brayner, F. A. , Feitosa, A. P. , Padilha, R. , Alves, L. C. , Porto, I. J. , Batista, R. F. , de Oliveira, J. E. , de Medeiros, E. S. , Bonan, P. R. , Castellano, L. R. , 2015. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed. Res. Int. 2015, 247965. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=109273364&site=ehost-live
[33] de Paz, L. E. C. , Resin, A. , Howard, K. A. , Sutherland, D. S. , Wejse, P. L. , 2011. Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl. Environ. Microbiol. 77, 3892-3895. doi: 10.1128/AEM.02941-10
[34] de Queiroz Antonino, R. , Lia Fook, B. , de Oliveira Lima, V. , de Farias Rached, R. , Lima, E. , da Silva Lima, R. , Peniche Covas, C. , Lia Fook, M. , 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Drugs 15, 141. doi: 10.3390/md15050141
[35] Deepa, R. , Paul, W. , Anilkumar, T. V. , Sharma, C. P. , 2013. Differential healing of full thickness rabbit skin wound by fibroblast loaded chitosan sponge. J. Biomater. Tissue Eng. 3, 261-272. doi: 10.1166/jbt.2013.1094
[36] Dhandayuthapani, B. , Krishnan, U. M. , Sethuraman, S. , 2010. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 94, 264-272. http://www.researchgate.net/publication/44650188_Fabrication_and_characterization_of_chitosan-gelatin_blend_nanofibers_for_skin_tissue_engineering_J_Biomed_Mater_Res_94B264-272
[37] Dhillon, G. S. , Kaur, S. , Brar, S. K. , Verma, M. , 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33, 379-403. doi: 10.3109/07388551.2012.717217
[38] Di Mario, F. , Rapanà, P. , Tomati, U. , Galli, E. , 2008. Chitin and chitosan from Basidiomycetes. Int. J. Biol. Macromol. 43, 8-12. doi: 10.1016/j.ijbiomac.2007.10.005
[39] Domalik-Pyzik, P. , Chłopek, J. , Pielichowska, K. , 2019. Chitosan-based hydrogels: preparation, properties, and applications. Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing, 1665-1693.
[40] Dong, P. , Yuan, L. W. , Hao, W. C. , Xia, Y. Y. , Da, G. Z. , Wang, T. M. , 2009. Biocompatibility of chitosan/heparin multilayer coating on NiTi alloy. Mater. Sci. Forum 610/611/612/613, 1179-1182. http://www.scientific.net/MSF.610-613.1179
[41] Du, Y. J. , Zhao, Y. Q. , Dai, S. C. , Yang, B. , 2009. Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol. 10, 103-107. doi: 10.1016/j.ifset.2008.07.004
[42] Duan, B. , Dong, C. H. , Yuan, X. Y. , Yao, K. D. , 2004. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 15, 797-811. doi: 10.1163/156856204774196171
[43] Duan, B. , Yuan, X. Y. , Zhu, Y. , Zhang, Y. Y. , Li, X. L. , Zhang, Y. , de Yao, K. , 2006. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur. Polym. J. 42, 2013-2022. doi: 10.1016/j.eurpolymj.2006.04.021
[44] Dutta, S. , Kim, J. , Ide, Y. , Ho Kim, J. , Hossain, M. S. A. , Bando, Y. , Yamauchi, Y. , Wu, K. C. W. , 2017. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 4, 522-545. doi: 10.1039/C6MH00500D
[45] Ehterami, A. , Salehi, M. , Farzamfar, S. , Samadian, H. , Vaez, A. , Ghorbani, S. , Ai, J. , Sahrapeyma, H. , 2019. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J. Drug Deliv. Sci. Technol. 51, 204-213. doi: 10.1016/j.jddst.2019.02.032
[46] Eldin, M. M. , Soliman, E. A. , Hashem, A. I. , Tamer, T. M. , 2008. Antibacterial activity of chitosan chemically modified with new technique. Trends Biomater. Artif. Organs 22, 125-137. http://www.researchgate.net/publication/228739488_Antibacterial_activity_of_chitosan_chemically_modified_with_new_technique
[47] Fernandes, J. C. , Spindola, H. , de Sousa, V. , Santos-Silva, A. , Pintado, M. E. , Malcata, F. X. , Carvalho, J. E. , 2010. Anti-inflammatory activity of chitooligosaccharides in vivo. Mar. Drugs 8, 1763-1768. doi: 10.3390/md8061763
[48] Fu, J. , Yang, F. C. , Guo, Z. G. , 2018. The chitosan hydrogels: from structure to function. New J. Chem. 42, 17162-17180. doi: 10.1039/C8NJ03482F
[49] Galvis-Sánchez, A. C. , Sousa, A. M. M. , Hilliou, L. , GonÇalves, M. P. , Souza, H. K. S. , 2016. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chem. 18, 1571-1580. doi: 10.1039/C5GC02231B
[50] Garg, T. , Chanana, A. , Joshi, R. , 2012a. Preparation of chitosan scaffolds for tissue engineering using freeze drying technology. IOSR J. Pharm. 2, 72-73. http://www.researchgate.net/publication/265427076_Preparation_of_Chitosan_Scaffolds_for_Tissue_Engineering_using_Freeze_drying_Technology
[51] Garg, T. , Singh, O. , Arora, S. , Murthy, R. S. R. , 2012b. Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug 29, 1-63. doi: 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10
[52] Ghosal, K. , Manakhov, A. , Zajíčková, L. , Thomas, S. , 2017. Structural and surface compatibility study of modified electrospun poly(ε -caprolactone) (PCL) composites for skin tissue engineering. AAPS Pharmscitech 18, 72-81. doi: 10.1208/s12249-016-0500-8
[53] Goy, R. C. , Morais, S. T. B. , Assis, O. B. G. , 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira De Farmacognosia 26, 122-127. doi: 10.1016/j.bjp.2015.09.010
[54] Hajji, S. , Younes, I. , Rinaudo, M. , Jellouli, K. , Nasri, M. , 2015. Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Appl. Biochem. Biotechnol. 177, 18-35. doi: 10.1007/s12010-015-1724-x
[55] Halim, A. , Periayah, M. , Saad, A. M. , 2016. Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 10, 39. doi: 10.4103/0973-7847.176545
[56] Han, F. , Dong, Y. , Su, Z. , Yin, R. , Song, A. H. , Li, S. M. , 2014. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. Int. J. Pharm. 476, 124-133. doi: 10.1016/j.ijpharm.2014.09.036
[57] Hiep, N. T. , Khon, H. C. , Niem, V. V. T. , Toi, V. V. , Ngoc Quyen, T. , Hai, N. D. , Ngoc Tuan Anh, M. , 2016. Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications. Int. J. Polym. Sci. 2016, 1-11. http://www.researchgate.net/publication/309022767_Microwave-Assisted_Synthesis_of_ChitosanPolyvinyl_Alcohol_Silver_Nanoparticles_Gel_for_Wound_Dressing_Applications
[58] Hohman, M. M. , Shin, M. , Rutledge, G. , Brenner, M. P. , 2001. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13, 2221-2236. doi: 10.1063/1.1384013
[59] Hu, K. J. , Hu, J. L. , Ho, K. P. , Yeung, K. W. , 2004. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr. Polym. 58, 45-52. doi: 10.1016/j.carbpol.2004.06.015
[60] Ikeda, T. , Ikeda, K. , Yamamoto, K. , Ishizaki, H. , Yoshizawa, Y. , Yanagiguchi, K. , Yamada, S. , Hayashi, Y. , 2014. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res. Int. 2014, 1-8.
[61] Ing, L. Y. , Zin, N. M. , Sarwar, A. , Katas, H. , 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater. 2012, 1-9.
[62] Islam, M. M. , Masum, S. M. , Mahbub, K. R. , 2011. In vitro antibacterial activity of shrimp chitosan against Salmonela paratyphi and Staphylococcus aureus. J. Bangla. Chem. Soc. 24, 185-190. http://www.researchgate.net/publication/235932532_In_vitro_antibacterial_activity_shrimp_chitosan_against_Salmonella_Paratyphi_Staphylococcus_Aureus/download
[63] Jayakumar, R. , Prabaharan, M. , Sudheesh Kumar, P. T. , Nair, S. V. , Tamura, H. , 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29, 322-337. doi: 10.1016/j.biotechadv.2011.01.005
[64] Ji, C. D. , Annabi, N. , Khademhosseini, A. , Dehghani, F. , 2011. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 7, 1653-1664. doi: 10.1016/j.actbio.2010.11.043
[65] Kabashima, K. , Honda, T. , Ginhoux, F. , Egawa, G. , 2019. The immunological anatomy of the skin. Nat. Rev. Immunol. 19, 19-30. doi: 10.1038/s41577-018-0084-5
[66] Kaya, M. , Akata, I. , Baran, T. , Menteş, A. , 2015a. Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys. 10, 162-168. doi: 10.1007/s11483-014-9378-8
[67] Kaya, M. , Asan-Ozusaglam, M. , Erdogan, S, 2016. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. J. Biosci. Bioeng. 121, 678-684. doi: 10.1016/j.jbiosc.2015.11.005
[68] Kaya, M. , Baran, T. , Asan-Ozusaglam, M. , Cakmak, Y. S. , Tozak, K. O. , Mol, A. , Mentes, A. , Sezen, G, 2015b. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 20, 168-179. doi: 10.1007/s12257-014-0391-z
[69] Kaya, M. , Baran, T. , Erdoğan, S. , Menteş, A. , Aşan Özüsağlam, M. , Çakmak, Y. S, 2014d. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. : C 45, 72-81. doi: 10.1016/j.msec.2014.09.004
[70] Kaya, M. , Baran, T. , Saman, I. , Asan Ozusaglam, M. , Cakmak, Y. S. , Menteş, A. , 2014b. Physicochemical characterization of chitin and chitosan obtained from resting eggs of Ceriodaphnia quadrangula (Branchiopoda: Cladocera: Daphniidae). J Crustacean Biol 34, 283-288. doi: 10.1163/1937240X-00002221
[71] Kaya, M. , Cakmak, Y. S. , Baran, T. , Asan-Ozusaglam, M. , Mentes, A. , Tozak, K. O, 2014a. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioprocess Eng. 19, 58-69. doi: 10.1007/s12257-013-0488-9
[72] Kaya, M. , Seyyar, O. , Baran, T. , Erdoğan, S. , Kar, M, 2014c. A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: with new surface morphology. Int. J. Biol. Macromol. 65, 553-558. doi: 10.1016/j.ijbiomac.2014.02.010
[73] Khalid, A., Naeem, N., Khan, T., Wahid, F., 2020. Polysaccharide composites as a wound-healing sponge. In: Al-Ahmed, A., Inamuddin (Eds. ), Advanced Applications of Polysaccharides and their Composites. Materials Research Forum LLC, 1-26.
[74] Kim, S. , 2018. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. 2018, 1-13. http://www.researchgate.net/publication/326516886_Competitive_Biological_Activities_of_Chitosan_and_Its_Derivatives_Antimicrobial_Antioxidant_Anticancer_and_Anti-Inflammatory_Activities
[75] Kleekayai, T. , Suntornsuk, W. , 2011. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 27, 1145-1154. doi: 10.1007/s11274-010-0561-x
[76] Kong, M. , Chen, X. G. , Xing, K. , Park, H. J. , 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012
[77] Koosha, M. , Raoufi, M. , Moravvej, H. , 2019. One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf B Biointerfaces 179, 270-279. doi: 10.1016/j.colsurfb.2019.03.054
[78] Kronenthal, R. , 2013. Polymers in medicine and surgery. Berlin: Springer Science & Business Media.
[79] Liao, Y. T. , Matsagar, B. M. , Wu, K. C. W. , 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 6, 13628-13643. doi: 10.1021/acssuschemeng.8b03683
[80] Limam, Z. , Selmi, S. , Sadok, S. , El Abed, A. , 2011. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10, 640-647. http://www.researchgate.net/publication/268370948_Extraction_and_characterization_of_chitin_and_chitosan_from_crustacean_by-products_Biological_and_physicochemical_properties
[81] Liu, H. , Wang, C. , Li, C. , Qin, Y. , Wang, Z. , Yang, F. , Li, Z. , Wang, J. , 2018. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 8, 7533-7549. doi: 10.1039/C7RA13510F
[82] Liu, X. C. , You, L. J. , Tarafder, S. , Zou, L. , Fang, Z. X. , Chen, J. D. , Lee, C. H. , Zhang, Q. Q. , 2019. Curcumin-releasing chitosan/aloe membrane for skin regeneration. Chem. Eng. J. 359, 1111-1119. doi: 10.1016/j.cej.2018.11.073
[83] Ma, P. X. , 2008. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184-198. doi: 10.1016/j.addr.2007.08.041
[84] Ma, Y. , Xin, L. , Tan, H. P. , Fan, M. , Li, J. L. , Jia, Y. , Ling, Z. H. , Chen, Y. , Hu, X. H. , 2017. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. : C 81, 522-531. doi: 10.1016/j.msec.2017.08.052
[85] Ma, Z. X. , Kim, D. , Adesogan, A. T. , Ko, S. , Galvao, K. , Jeong, K. C. , 2016. Chitosan microparticles exert broad-spectrum antimicrobial activity against antibiotic-resistant micro-organisms without increasing resistance. ACS Appl. Mater. Interfaces 8, 10700-10709. doi: 10.1021/acsami.6b00894
[86] Madni, A. , Khan, R. , Ikram, M. , Naz, S. S. , Khan, T. , Wahid, F. , 2019. Fabrication and characterization of chitosan-vitamin C-lactic acid composite membrane for potential skin tissue engineering. Int. J. Polym. Sci. 2019, 1-8. http://www.researchgate.net/publication/330683254_Fabrication_and_Characterization_of_Chitosan-Vitamin_C-Lactic_Acid_Composite_Membrane_for_Potential_Skin_Tissue_Engineering
[87] Masood, N. , Ahmed, R. , Tariq, M. , Ahmed, Z. , Masoud, M. S. , Ali, I. , Asghar, R. , Andleeb, A. , Hasan, A. , 2019. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 559, 23-36. doi: 10.1016/j.ijpharm.2019.01.019
[88] Morgado, P. I. , Miguel, S. P. , Correia, I. J. , Aguiar-Ricardo, A. , 2017. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr. Polym. 159, 136-145. doi: 10.1016/j.carbpol.2016.12.029
[89] Naveed, M. , Phil, L. , Sohail, M. , Hasnat, M. , Baig, M. M. F. A. , Ihsan, A. U. , Shumzaid, M. , Kakar, M. U. , Khan, T. M. , Akabar, M. D. , Hussain, M. I. , Zhou, Q. G. , 2019. Chitosan oligosaccharide (COS): an overview. Int. J. Biol. Macromol. 129, 827-843. doi: 10.1016/j.ijbiomac.2019.01.192
[90] Nguyen, V. C. , Nguyen, V. B. , Hsieh, M. F. , 2013. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int. J. Polym. Sci. 2013, 1-7.
[91] No, H. K. , Kim, S. H. , Lee, S. H. , Park, N. Y. , Prinyawiwatkul, W. , 2006. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr. Polym. 65, 174-178. doi: 10.1016/j.carbpol.2005.12.036
[92] No, H. K. , Young Park, N. , Ho Lee, S. , Meyers, S. P. , 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65-72. doi: 10.1016/S0168-1605(01)00717-6
[93] Oduor-Odeto, P. M. , Struszezyk, M. H. , Peter, M. G. , 2007. Characterisation of chitosan from blowfly larvae and some crustacean species from Kenyan Marin waters prepared under different conditions. West Ind. Oc. J. Mar. Sci. 4, 99-108. http://www.oalib.com/paper/1352089
[94] Oliveira, M. I. , Santos, S. G. , Oliveira, M. J. , Torres, A. L. , Barbosa, M. A. , 2012. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur. Cell Mater. 24, 136-153. doi: 10.22203/eCM.v024a10
[95] Oryan, A. , Sahvieh, S. , 2017. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003-1011. doi: 10.1016/j.ijbiomac.2017.06.124
[96] Pandey, A. R. , Singh, U. S. , Momin, M. , Bhavsar, C. , 2017. Chitosan: Application in tissue engineering and skin grafting. J. Polym. Res. 24, 125. doi: 10.1007/s10965-017-1286-4
[97] Park, C. H. , Lee, W. I. , 2012. Compression molding in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs). Amsterdam: Elsevier, 47-94. http://www.sciencedirect.com/science/article/pii/B9780857090676500031?np=y
[98] Patil, P. S. , Fathollahipour, S. , Inmann, A. , Pant, A. , Amini, R. , Shriver, L. P. , Leipzig, N. D. , 2019. Fluorinated methacrylamide chitosan hydrogel dressings improve regenerated wound tissue quality in diabetic wound healing. Adv. Wound Care (New Rochelle) 8, 374-385. doi: 10.1089/wound.2018.0887
[99] Pereira, R. F. , Bártolo, P. J. , 2016. Traditional therapies for skin wound healing. Adv. Wound Care (New Rochelle) 5, 208-229. doi: 10.1089/wound.2013.0506
[100] Pezeshki-Modaress, M. , Rajabi-Zeleti, S. , Zandi, M. , Mirzadeh, H. , Sodeifi, N. , Nekookar, A. , Aghdami, N, 2014. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: In vitro and in vivo study. J. Biomed. Mater. Res. Part A 102, 3908-3917. doi: 10.1002/jbm.a.35054
[101] Pini, R. , Storti, G. , Mazzotti, M. , Tai, H. Y. , Shakesheff, K. M. , Howdle, S. M. , 2007. Sorption and Swelling of Poly(D, L-lactic acid) and Poly(lactic-co-glycolic acid) in Supercritical CO2. Macromol. Symp. 259, 197-202. doi: 10.1002/masy.200751323
[102] Pochanavanich, P. , Suntornsuk, W. , 2002. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 35, 17-21. doi: 10.1046/j.1472-765X.2002.01118.x
[103] Prasad, T. , Shabeena, E. A. , Vinod, D. , Kumary, T. V. , Anil Kumar, P. R. , 2015. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J Mater Sci Mater Med 26, 5352. http://www.ncbi.nlm.nih.gov/pubmed/25578706
[104] Qu, D. F. , Han, J. Z. , 2016. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet. R. Bras. Zootec. 45, 661-666. doi: 10.1590/s1806-92902016001100004
[105] Rahmani del Bakhshayesh, A. , Annabi, N. , Khalilov, R. , Akbarzadeh, A. , Samiei, M. , Alizadeh, E. , Alizadeh-Ghodsi, M. , Davaran, S. , Montaseri, A. , 2018. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol. 46, 691-705. doi: 10.1080/21691401.2017.1349778
[106] Rajitha, P. , Gopinath, D. , Biswas, R. , Sabitha, M. , Jayakumar, R. , 2016. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin. Drug Del. 13, 1177-1194. doi: 10.1080/17425247.2016.1178232
[107] Ran, L. X. , Zou, Y. N. , Cheng, J. W. , Lu, F. , 2019. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int. J. Biol. Macromol. 125, 392-403. doi: 10.1016/j.ijbiomac.2018.12.052
[108] Ravishankar, K. , Venkatesan, M. , Desingh, R. P. , Mahalingam, A. , Sadhasivam, B. , Subramaniyam, R. , Dhamodharan, R. , 2019. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C 102, 447-457. doi: 10.1016/j.msec.2019.04.038
[109] Ruiz, G. A. M., Corrales, H. F. Z., 2017. Chitosan, chitosan derivatives and their biomedical applications. In: Shalaby, E. (Eds. ). Biological Activities and Application of Marine Polysaccharides, Books on Demand (BoD), 87-106.
[110] Sacco, P. , Furlani, F. , de Marzo, G. , Marsich, E. , Paoletti, S. , Donati, I. , 2018. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels 4, 67. doi: 10.3390/gels4030067
[111] Sagheer, F. A. A. , Al-Sughayer, M. A. , Muslim, S. , Elsabee, M. Z. , 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410-419. doi: 10.1016/j.carbpol.2009.01.032
[112] Sah, M. K. , Rath, S. N. , 2016. Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater. Sci. Eng. C 67, 807-821. doi: 10.1016/j.msec.2016.05.005
[113] Saharan, V. , Sharma, G. , Yadav, M. , Choudhary, M. K. , Sharma, S. S. , Pal, A. , Raliya, R. , Biswas, P, 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 75, 346-353. doi: 10.1016/j.ijbiomac.2015.01.027
[114] Salehi, M. , Farzamfar, S. , Bastami, F. , Tajerian, R. , 2016. Fabrication and characterization of electrospun plla/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed. Eng. Appl. Basis Commun. 28, 1650035. doi: 10.4015/S1016237216500356
[115] Sami El-banna, F. , Mahfouz, M. E. , Leporatti, S. , El-Kemary, M. , Hanafy, N. A. N. , 2019. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl. Sci. 9, 2193. doi: 10.3390/app9112193
[116] Sarkar, S. D. , Farrugia, B. L. , Dargaville, T. R. , Dhara, S. , 2013. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J. Biomed. Mater. Res. Part A 101, 3482-3492. doi: 10.1002/jbm.a.34660
[117] Sharma, S. , Batra, S. , 2019. Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application. Materials for Biomedical Engineering. Amsterdam: Elsevier, 97-119.
[118] Shpichka, A. , Butnaru, D. , Bezrukov, E. A. , Sukhanov, R. B. , Atala, A. , Burdukovskii, V. , Zhang, Y. Y. , Timashev, P. , 2019. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 10, 94. doi: 10.1186/s13287-019-1203-3
[119] Sionkowska, A. , Płanecka, A. , 2013. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J. Mol. Liq. 178, 5-14. doi: 10.1016/j.molliq.2012.10.042
[120] Sivashankari, P. R. , Prabaharan, M. , 2016. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol. 93, 1382-1389. doi: 10.1016/j.ijbiomac.2016.02.043
[121] Tamer, T. M. , Valachová, K. , Hassan, M. A. , Omer, A. M. , El-Shafeey, M. , Mohy Eldin, M. S. , Šoltés, L. , 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Mater. Sci. Eng. : C 90, 227-235. doi: 10.1016/j.msec.2018.04.053
[122] Tomida, H. , Fujii, T. , Furutani, N. , Michihara, A. , Yasufuku, T. , Akasaki, K. , Maruyama, T. , Otagiri, M. , Gebicki, J. M. , Anraku, M. , 2009. Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res. 344, 1690-1696. doi: 10.1016/j.carres.2009.05.006
[123] Tong, C. , Hao, H. J. , Xia, L. , Liu, J. J. , Ti, D. D. , Dong, L. , Hou, Q. , Song, H. J. , Liu, H. L. , Zhao, Y. L. , Fu, X. B. , Han, W. D. , 2016. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 24, 45-56. doi: 10.1111/wrr.12369
[124] Tsigos, I. , Martinou, A. , Kafetzopoulos, D. , Bouriotis, V. , 2000. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 18, 305-312. doi: 10.1016/S0167-7799(00)01462-1
[125] Tu, J. , Xu, Y. L. , Xu, J. Q. , Ling, Y. , Cai, Y. Q. , 2016. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int. J. Biol. Macromol. 86, 848-856. doi: 10.1016/j.ijbiomac.2016.02.015
[126] Vilar, J. C. Jr, Ribeaux, D. R. , Alves da Silva, C. A. , de Campos-Takaki, G. M. , 2016. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. 2016, 1-7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961830/
[127] Visentin, A. F. , Dong, T. Y. , Poli, J. , Panzer, M. J. , 2014. Rapid, microwave-assisted thermal polymerization of poly(ethylene glycol) diacrylate-supported ionogels. J. Mater. Chem. A 2, 7723. doi: 10.1039/c4ta00907j
[128] Vivcharenko, V. , Benko, A. , Palka, K. , Wojcik, M. , Przekora, A. , 2020. Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. Int. J. Biol. Macromol. 164, 172-183. doi: 10.1016/j.ijbiomac.2020.07.099
[129] Wahid, F. , Khan, T. , Hussain, Z. , Ullah, H. , 2018. Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin Asiri, A. M. , Mohammad, A. (Eds. ). Applications of Nanocomposite Materials in Drug Delivery. UK: Woodhead Publishing, 701-735.
[130] Xie, Y. , Yi, Z. X. , Wang, J. X. , Hou, T. G. , Jiang, Q. , 2018. Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 1225-1233. doi: 10.1016/j.ijbiomac.2018.02.075
[131] Xu, Z. P. , Shi, L. Y. , Yang, M. Y. , Zhang, H. P. , Zhu, L. J. , 2015. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J. Mater. Chem. B 3, 3634-3642. doi: 10.1039/C5TB00226E
[132] Yamada, M. , Kurano, M. , Inatomi, S. , Taguchi, G. , Okazaki, M. , Shimosaka, M. , 2008. Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 289, 130-137. doi: 10.1111/j.1574-6968.2008.01361.x
[133] Yang, E. J. , Kim, J. G. , Kim, J. Y. , Kim, S. C. , Lee, N. H. , Hyun, C. G. , 2010. Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Central Eur. J. Biol. 5, 95-102.
[134] Yen, M. T. , Tseng, Y. H. , Li, R. C. , Mau, J. L. , 2007. Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci. Technol. 40, 255-261. doi: 10.1016/j.lwt.2005.08.006
[135] Younes, I. , Rinaudo, M, 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13, 1133-1174. doi: 10.3390/md13031133
[136] Yuan, J. , Hou, Q. , Chen, D. , Zhong, L. , Dai, X. , Zhu, Z. , Li, M. , Fu, X. , 2020. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci China Life Sci. 63, 552-562. doi: 10.1007/s11427-018-9389-6
[137] Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X, 2010. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res A 95, 870-881. http://www.ncbi.nlm.nih.gov/pubmed/20824649
[138] Zhang, J. J. , Yang, Z. , Li, C. , Dou, Y. N. , Li, Y. J. , Thote, T. , Wang, D. A. , Ge, Z. G. , 2013. Cells behave distinctly within sponges and hydrogels due to differences of internal structure. Tissue Eng. Part A 19, 2166-2175. doi: 10.1089/ten.tea.2012.0393
[139] Zhao, Y. , Park, R. D. , Muzzarelli, R. A. , 2010. Chitin deacetylases: properties and applications. Mar. Drugs 8, 24-46. doi: 10.3390/md8010024
[140] Zhong, Z. M. , Chen, R. , Xing, R. , Chen, X. L. , Liu, S. , Guo, Z. Y. , Ji, X. , Wang, L. , Li, P. C. , 2007. Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydr. Res. 342, 2390-2395. doi: 10.1016/j.carres.2007.07.015
[141] Zhou, H. Y. , Zhang, Y. P. , Zhang, W. F. , Chen, X. G. , 2011. Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr. Polym. 83, 1643-1651. doi: 10.1016/j.carbpol.2010.10.022
[142] Ziani, K. , Fernández-Pan, I. , Royo, M. , Maté, J. I. , 2009. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 23, 2309-2314. doi: 10.1016/j.foodhyd.2009.06.005
[143] Zou, P. , Lee, W. H. , Gao, Z. , Qin, D. , Wang, Y. , Liu, J. , Sun, T. , Gao, Y. , 2020. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym. 232, 115786. doi: 10.1016/j.carbpol.2019.115786
[144] Zulkifli, F. H. , Hussain, F. S. J. , Zeyohannes, S. S. , Rasad, M. S. B. A. , Yusuff, M. M. , 2017. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C 79, 151-160. doi: 10.1016/j.msec.2017.05.028