[1] Banerjee, P. , Satapathy, M. , Mukhopahayay, A. , Das, P. , 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1, 1-10 doi: 10.1186/s40643-014-0001-0
[2] Bindhani, B. K. , Panigrahi, A. K. , 2015. Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum sanctum L. (Tulsi) and study of its antibacterial activities. J. Nanomed. Nanotechnol. S6: 8. http://www.researchgate.net/publication/283811934_Biosynthesis_and_Characterization_of_Silver_Nanoparticles_Snps_by_using_Leaf_Extracts_of_Ocimum_Sanctum_L_Tulsi_and_Study_of_its_Antibacterial_Activities
[3] Brumbaugh, A. D. , Cohen, K. A. , St Angelo, S. K. , 2014. Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustainable Chem. Eng. 2, 1933-1939. doi: 10.1021/sc500393t
[4] Cady, N. C. , Behnke, J. L. , Strickland, A. D. , 2011. Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen. A. baumannii, and mammalian cell biocompatibility in vitro. Adv. Funct. Mater. 21, 2506-2514
[5] Heera, P. , Shanmugam, S. , Ramachandran, J. , 2015. Green synthesis of copper nanoparticles. Int. J. Curr. Res. and Acad. Rev. 3, 268-275. http://www.researchgate.net/publication/335680394_GREEN_SYNTHESIS_OF_COPPER_NANOPARTICLES
[6] Ibrahim, H. M. M. , 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265-275. doi: 10.1016/j.jrras.2015.01.007
[7] Jamshidi, A. , Jahangiri, M. , 2014. Synthesis of copper nanoparticles and its antibacterial activity against Escherichia coli. Asian J. Biol. Sci. 7, 183-186. doi: 10.3923/ajbs.2014.183.186
[8] Kathireswari, P. , Gomathi, S. , Saminathan, K. , 2014. Green synthesis of silver nanoparticles using Vitex negundo and its antimicrobial activity against human pathogens. Int. J. Curr. Microbiol. App. Sci. 3, 614-621.
[9] Kulkarni. V. D. , Kulkarni, P. S. , 2013. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Inter. J. Chem. Stud. 1, 1-4.
[10] Kumar Trivedi, M. , 2015. The potential impact of biofield energy treatment on the physical and thermal properties of silver oxide powder. Int. J. Biomed. Sci. Eng. 3, 62. doi: 10.11648/j.ijbse.20150305.11
[11] Li, R. , He, M. , Li, T. , Zhang, L. N. , 2015. Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr. Polym. 115, 269-275. doi: 10.1016/j.carbpol.2014.08.046
[12] Logeswari, P. , Silambarasan, S. , Abraham, J. , 2013. Eco friendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci. Iran. 20, 1049-1054.
[13] Mahdieh, M. , Zolanvari, A. , Azimee, A. S. , Mahdieh, M. , 2012. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci. Iran. 19, 926-929. doi: 10.1016/j.scient.2012.01.010
[14] Muthulakshmi, L. , Rajini, N. , Nellaiah, H. , Kathiresan, T. , Jawaid, M. , Rajulu, A. V. , 2017a. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 95, 1064-1071. doi: 10.1016/j.ijbiomac.2016.09.114
[15] Muthulakshmi, L. , Rajini, N. , Nellaiah, H. , Kathiresan, T. , Jawaid, M. , Varada Rajulu, A. , 2017b. Experimental investigation of cellulose/silver nanocomposites using in situ generation method. J. Polym. Environ. 25, 1021-1032. doi: 10.1007/s10924-016-0871-7
[16] Sadanand, V. , Rajini, N. , Satyanarayana, B. , Varada Rajulu, A. , 2016a. Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract. Int. J. Polym. Anal. Charact. 21, 408-416. doi: 10.1080/1023666X.2016.1161100
[17] Sadanand, V. , Rajini, N. , Varada Rajulu, A. , Satyanarayana, B. , 2016b. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr. Polym. 150, 32-39. doi: 10.1016/j.carbpol.2016.04.121
[18] Sutradhar, P. , Saha, M. , Maiti, D. , 2014. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostructure Chem. 4, 1-6. doi: 10.1007/s40097-014-0086-1
[19] Vainio, U. , Pirkkalainen, K. , Kisko, K. , Goerigk, G. , Kotelnikova, N. E. , Serimaa, R. , 2007. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering. Eur. Phys. J. D. 42, 93-101. doi: 10.1140/epjd/e2007-00015-y
[20] Varaprasad, K. , Vimala, K. , Ravindra, S. , Narayana Reddy, N. , Venkata Subba Reddy, G. , Mohana Raju, K. , 2011. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J. Mater. Sci. : Mater. Med. 22, 1863-1872. doi: 10.1007/s10856-011-4369-5
[21] Zoghbi, M. D. G. B. , Andrade, E. H. A. , Maia, J. G. S. , 1999. The essential oil of Vitex agnus-castus L. growing in the Amazon region. Flavour Fragr. J. 14, 211-213. doi: 10.1002/(SICI)1099-1026(199907/08)14:4<211::AID-FFJ812>3.0.CO;2-W