[1] Abu-Rous, M., Varga, K., Bechtold, T., Schuster, K.C., 2007. A new method to visualize and characterize the pore structure of TENCEL® (Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J. Appl. Polym. Sci. 106, 2083-2091. doi: 10.1002/app.26722
[2] Andre, P., Marsh, K.N., Pang, S., 2010. Reflections on the solubility of cellulose. Ind. Eng. Chem. Res. 49, 11121-11130. doi: 10.1021/ie1006596
[3] Biganska, O., Navard, P., 2009. Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide-water solutions. Cellulose 16, 179-188. doi: 10.1007/s10570-008-9256-y
[4] Camper, I.P., Bott, C.B., 2006. Improvement of an industrial wastewater treatment system at a former viscose rayon plant-results from two-stage biological leachate treatability testing. Proc. Water Environ. Fed. 2006, 1830-1845. doi: 10.2175/193864706783750394
[5] Chaudemanche, C., Navard, P., 2011. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 18, 1-15. doi: 10.1007/s10570-010-9460-4
[6] Chavan, R., Patra, A., 2004. Development and processing of lyocell. Indian Journal of Fibre and Textile Research 29, 483. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000686675
[7] Chen, C. X., Liu, Y. S., Duan, C., 2015. Comparison of production technology and characteristics of the dissolving pulps based on AS and PHK processes. China Pulp & Paper 34, 66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzz201512014
[8] Chen, H.L., Burns, L.D., 2006. Environmental analysis of textile products. Cloth. Text. Res. J. 24, 248-261. doi: 10.1177/0887302X06293065
[9] Cheng, B. W., 1999. Status and development of fiber. Artificial Fiber 2, 26-30. http://d.old.wanfangdata.com.cn/Periodical/cyyfzp201805001
[10] Deo, H. T., 2001. Eco friendly textile production. Indian Journal of Fibre & Textile Research 26, 61-73. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211767461/
[11] Dogan, H., Hilmioglu, N.D., 2009. Dissolution of cellulose with NMMO by microwave heating. Carbohydr. Polym. 75, 90-94. doi: 10.1016/j.carbpol.2008.06.014
[12] Duan, J. L., Hu, X. C., Zhang, T. L., Shao, H. L., 1999. Influence of the coagulation bath concentration on the mechanical properties and the maximum spinning speed of lyocell fiber. Synthetic Fiber, 28, 5-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900256065
[13] Duan, J. L., Shao, H. L., Zhang, T. L., Hu, X. C., 2001. Influence of the coagulation bath temperature on the structure and properties of lyocell fiber. Journal of textile research 22, 13-15.
[14] Ertas, Y., Uyar, T, 2017. Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr. Polym. 177, 378-387. doi: 10.1016/j.carbpol.2017.08.127
[15] Eva, B., 2008. Lyocell, the new generation of regenerated cellulose. Acta Polytechnica Hungarica 5, 11-18. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_db1b4dcd727e2e23eab8e2a8c0b27bef
[16] Fink, H., Weigel, P., Purz, H., Ganster, J., 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26, 1473-1524. doi: 10.1016/S0079-6700(01)00025-9
[17] Fu, F.Y., Yang, Q.L., Zhou, J.P., Hu, H.Z., Jia, B.Q., Zhang, L.N., 2014. Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate-NaOH/ZnO aqueous solution. ACS Sustainable Chem. Eng. 2, 2604-2612. doi: 10.1021/sc500559g
[18] Gao, D. C., Lu, X. Y., Wang, H. P., 2019a. Technological development of industrial process of lyocell fiber. Artificial Fiber 49, 2-16.
[19] Gao, D. C., Lu, X. Y., Wang, H. P., 2019b. Technological development of industrial process of lyocell fiber. Artificial Fiber 49, 13-19.
[20] Gavillon, R., Budtova, T., 2007. Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellu-lose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8, 424-432. doi: 10.1021/bm060376q
[21] Hohberg, T., Thumm, S., 1998. Finishing of lyocell. Melliand 4, 59-67. http://d.old.wanfangdata.com.cn/Periodical/fzxb202002014
[22] Ingildeev, D., Effenberger, F., Bredereck, K., Hermanutz, F., 2013. Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. J. Appl. Polym. Sci. 128, 4141-4150. doi: 10.1002/app.38470
[23] Ingruber, O. V., Kocurek, M. J., Wong, A., 1985. Sulfite science and technology. Beijing: Joint Textbook Committee of the Paper Industry.
[24] Kang, Y., Chai, X. J., Ai, G., 2011. Properties and application of copper ammonia fiber. Hebei Textile 1, 10-12.
[25] Karimi, K., Taherzadeh, M.J., 2016. A critical review of analytical methods in pretreatment of lignocelluloses:Composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008-1018. doi: 10.1016/j.biortech.2015.11.022
[26] Kongdee, A., Bechtold, T., Burtscher, E., Scheinecker, M., 2004. The influence of wet/dry treatment on pore structure-the correlation of pore parameters, water retention and moisture regain values. Carbohydr. Polym. 57, 39-44. doi: 10.1016/j.carbpol.2004.03.025
[27] Konkin, A., Wendler, F., Meister, F., Roth, H.K., Aganov, A., Ambacher, O., 2007. Degradation processes in the cellu-lose/N-methylmorpholine-N-oxide system studied by HPLC and ESR. Radical formation/recombination kinetics under UV photolysis at 77 K. Cellulose 14, 457-468.
[28] Kotek, R., 2008. Recent advances in polymer fibers. Polym. Rev. 48, 221-229. doi: 10.1080/15583720802020038
[29] LaNieve, H., 2006. Cellulose acetate and triacetate fibers. (3rd ed.). U.S.: CRC Press, 774-808.
[30] Li, J., 2018. Patent analysis on lyocell fiber of Lenzing Group. Advanced Material Industry 295, 42-45.
[31] Li, J.G., Zhang, H.J., Duan, C., Liu, Y.S., Ni, Y.H., 2015. Enhancing hemicelluloses removal from a softwood sulfite pulp. Bioresour. Technol. 192, 11-16. doi: 10.1016/j.biortech.2015.04.107
[32] Li, Q. C., Huang, Z. Q., 2001. Preliminary study on the dissolving pulp for lyocell fiber. Guangxi Chemical fiber Communication 1, 5-8.
[33] Lin, Z. W., Ke, J. J., 2000. History, technology, properties and development of lyocell fiber. Textile Science Research 1, 29-33.
[34] Liu, R. G., 1997. New special of cellulosic fiber:lyocell. Textile Technology Overseas 9, 25-28.
[35] Liu, Y.S., Chen, C.X., Li, J.G., Duan, C., Zheng, L.Q., Ni, Y.H, 2016. Quality requirements and production technologies of dissolving pulp. China Pulp Pap. 35, 56-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzz201602011
[36] Luo, X.G., Liu, S.L., Zhou, J.P., Zhang, L.N., 2009. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem. 19, 3538.
[37] Maréchal, A., 1993. Acid extraction of the alkaline wood pulps (kraft or SODA/AQ) before or during bleaching reason and opportunity. J. Wood Chem. Technol. 13, 261-281. doi: 10.1080/02773819308020517
[38] Maron, R., Michels, C., Taeger, E., 1994. Investigations for preparation of cellulose solutions in NMMO and the following forming. Lenzinger Berichte 74, 27-29.
[39] Medronho, B., Lindman, B., 2014. Competing forces during cellulose dissolution:From solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 19, 32-40. doi: 10.1016/j.cocis.2013.12.001
[40] Meiste, R. G., Wechsle, R. M., 1998. Biodegradation of N-methylmorpholine-N-oxide. Biodegradation 9, 91-102. doi: 10.1023/A:1008264908921
[41] Mo, D. C., 2002. Review of spinning process of lyocell fiber. Guangxi Chemical fiber Communication 1, 25-29. (in Chinese)
[42] Mortimer, S. A., Peguy, A. A., 1996a. The formation of structure in the spinning and coagulation of lyocell fibers. Cellulose Chemistry and Technology 30, 71-82.
[43] Mortimer, S. A., Peguy, A. A., Ball, R. C., 1996. Influence of the physical process parameters on the structure formation of lyocell fibres. Cel-lulose Chemistry and Technology 30, 251-266. http://www.researchgate.net/publication/279901655_Influence_of_the_physical_process_parameters_on_the_structure_formation_of_lyocell_fibres
[44] Mortimer, S.A., Peguy, A.A., 1996b. The influence of air-gap conditions on the structure formation of Lyocell fibers. J. Appl. Polym. Sci. 60, 1747-1756. doi: 10.1002/(SICI)1097-4628(19960606)60:10<1747::AID-APP28>3.0.CO;2-#
[45] Peng, H.F., Dai, G.L., Wang, S.P., Xu, H.Y., 2017. The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J. Mol. Liq. 241, 959-966. doi: 10.1016/j.molliq.2017.06.103
[46] Peng, S. J., 2003. Studies on high strength lyocell fiber and Its application for the precursor of carbon fiber. Shanghai: Donghua University.
[47] Perepelkin, K.E., 2007. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide:Development and prospects. Fibre Chem. 39, 163-172. doi: 10.1007/s10692-007-0032-9
[48] Periyasamy, A. P., Khanum, M. R., 2012. Effect of fbrillation on pilling tendency of lyocell fiber. Bangladesh Textile Today 4, 31-37.
[49] Pinkert, A., Marsh, K.N., Pang, S.S., 2010. Reflections on the solubility of cellulose. Ind. Eng. Chem. Res. 49, 11121-11130. doi: 10.1021/ie1006596
[50] Qian, B. Z., 2018. Reduction in cost of Lyocell fiber must cross three barriers. Advances in fine petrochemicals 3, 49.
[51] Ramos, L. A., Morgado, D. L., Gessner, F., Frollini, E., Seoudb, O. A., 2011. A physical organic chemistry approach to dissolution of cellulose:effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc Online Journal of Organic Chemistry 7, 416-425. http://cn.bing.com/academic/profile?id=9d54d414a000bd17d3a16dfa53d1b4bd&encoded=0&v=paper_preview&mkt=zh-cn
[52] Reddy, N., Yang, Y.Q., 2014. The N-methylmorpholine-N-oxide (NMMO) process of producing regenerated fibers. Innovative Biofibers from Renewable Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 65-71.
[53] Rohrer, C., Retzl, P., Firgo, H., 2001. Lyocell LF-Profile of a fibrillation-free fibre from Lenzing. Lenzinger Berichte 80, 75-79.
[54] Rosenau, T., Potthast, A., Sixta, H., Kosma, P., 2001. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 26, 1763-1837. doi: 10.1016/S0079-6700(01)00023-5
[55] Sayyed, A., Deshmukh, N.A., Pinjari, D.V., 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres:viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913-2940. doi: 10.1007/s10570-019-02318-y
[56] Sayyed, A.J., Mohite, L.V., Deshmukh, N.A., Pinjari, D.V., 2018. Structural characterization of cellulose pulp in aqueous NMMO solution under the process conditions of lyocell slurry. Carbohydr. Polym. 206, 220-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c6a6324b4dbd11bccb3a623747b7540
[57] Schild, G., Sixta, H., 2011. Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18, 1113-1128. doi: 10.1007/s10570-011-9532-0
[58] Schuster, K.C., Rohrer, C., Eichinger, D., Schmidtbauer, J., Aldred, P., Firgo, H., Environmentally friendly lyocell fibers. Natural Fibers, Plastics and Composites. Boston, MA: Springer US, 2004: 123-146.
[59] Shaikh, T., Chaudhari, S., Varma, A., 2012. Viscose rayon:a legendary development in the manmade textile. International J. Eng. Res. Appl. 2, 675-680.
[60] Sixta, H., 2008. Introduction. Handbook of Pulp. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2-19.
[61] Thomas, H., Rene, D., Andreas, K., 2000. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 201, 627-631. doi: 10.1002/(SICI)1521-3935(20000301)201:6<627::AID-MACP627>3.0.CO;2-Y
[62] Tong, M. W., Zhang, H. R., Shao, H. L., Hu, X. C., 2005. Structure and properties of lyocell fiber from high hemicellulose pulp. Synthetic Fiber 8, 1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hcxw200508001
[63] Treiber, E., Rehnstrom, J., Ameen, C., 1962. A small scale laboratory viscose plant for testing rayon grade pulps. Das Papier 16, 85-94.
[64] Uddin, A.J., Yamamoto, A., Gotoh, Y., Nagura, M., Iwata, M., 2010. Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text. Res. J. 80, 1846-1858. doi: 10.1177/0040517510369408
[65] Vanhoorne, M., van den Berge, L., Devreese, A., Tijtgat, E., van Poucke, L., van Peteghem, C. V., 1991. Survey of chemical exposures in a viscose rayon plant. Ann. Occup. Hyg. 35, 619-631. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005805971
[66] Vila, C., Santos, V., Parajó, J.C., 2004. Dissolving pulp from TCF bleached Acetosolv beech pulp. J. Chem. Technol. Biotechnol. 79, 1098-1104. doi: 10.1002/jctb.1090
[67] Viviana, K., 2010. Conversion of wood and non-wood paper-grade pulps to dissolving-grade pulps. Stockholm: Sweden Royal Institute of Technology.
[68] Wan, Y. B., Wang, S. Y., 1999. Fibrilation properties of solvated cellulosic fiber. Journal of Textile Research 20, 19-21.
[69] Wang, L. J., Liu, Y. N., Fang, D., Li, Z. J., 2017. Status and development research of Lyocell fiber at home and abroad. Journal of Textile Research 38, 164-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzxb201704029
[70] Wang, L. J., Pan, S. J., 2000. Discussion on the development prospect of lyocell fiber in China from its experiment and practice. Artificial Fiber 30, 26-31.
[71] Wang, S. L., 2010. Studies on the structure and properties of cellulose acetate fiber. Shandong: Qingdao University.
[72] Wang, S., Yang, Y.W., Lu, A., Zhang, L.N., 2019. Construction of cellulose/ZnO composite microspheres in NaOH/zinc nitrate aqueous solution via one-step method. Cellulose 26, 557-568. doi: 10.1007/s10570-018-2201-9
[73] Wang, Z. H., 2018. Research on cellulose acetate and its application. Acetaldehyde Acetic Acide Chemical Industry 5, 17-25.
[74] Wendler, F., Konkin, A., Heinze, T., 2008. Studies on the stabilization of modified lyocell solutions. Macromol. Symp. 262, 72-84. doi: 10.1002/masy.200850208
[75] White, P., 2001. Lyocell:the production process and market development. Regenerated Cellulose Fibres. 1, 62-87. http://d.old.wanfangdata.com.cn/Periodical/gfzclkxygc200505026
[76] Woodings, C., 2001. Regenerated cellulose fibres. Cambridge: Woodhead Publishing Limited.
[77] Xu, H., Xu, M. F., Cheng, C. Z., Li, Q., 2012. Influence of copper on the thermal stability of the lyocell fiber spinning solution. Synthetic Fiber in China 41, 13-16.
[78] Yang, M. H., Yang, D. J., 2002. Relationship between structure and properties of lyocell fiber. Journal of Chengdu Textile College 19, 10-12.
[79] Yuan, C.P., Shi, W.T., Chen, P., Chen, H.X., Zhang, L.H., Hu, G., Jin, L.M., Xie, H.B., Zheng, Q., Lu, S.J., 2019. Dissolution and transesterifi-cation of cellulose in γ-valerolactone promoted by ionic liquids. New J. Chem. 43, 330-337. doi: 10.1039/C8NJ03505A
[80] Yue, W. T., Zhou, M. H., Shao, H. L., Hu, X. C., 2002. Purification and regeneration of the aqueous solutions of NMMO using ion exchange resin. Synthetic Fiber 2, 28-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hcxw200202008
[81] Zhang, H. H., Wei, M. Y., Shao, H. L., 2010. Effect of cellulose pulp on the properties of lyocell fiber used as tire cord. Journal of Donghua University:Natural Science 5, 486-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfzdxxb201005002
[82] Zhang, H. R., 2007. Study on lyocell fiber from a cheap pulp with high hemicellulose content. Shanghai: Donghua University.
[83] Zhang, J. C., 1999. Study on the structure and properties of lyocell fiber. Chengdu: Sichuan University.
[84] Zhang, S. K., Chen, C. X., Duan, C., Hu, H. C., Li, H. L., Li, J. G., Liu, Y. S., Ma, X. J., Jaroslav, S., Ni, Y. H., 2018. Regenerated cellulose by the lyocell process, a brief review of the process and properties. Bioresour. 13, 1-16.
[85] Zhang, S., 2010. Preparing regenerated cellulose fibers using novel solution and its structure and properties. Shanghai: Donghua University.
[86] Zhang, Y.P., Shao, H.L., Wu, C.X., Hu, X.C., 2001. Formation and characterization of cellulose membranes fromN-methylmorpholine-N-oxide solution. Macromol. Biosci. 1, 141-148. doi: 10.1002/1616-5195(20010601)1:4<141::AID-MABI141>3.0.CO;2-J