[1] Abdou, E.S., Nagy, K.S., Elsabee, M.Z., 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99, 1359-1367. doi: 10.1016/j.biortech.2007.01.051
[2] Aragay, G., Pons, J., Merko i, A., 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433-3458. doi: 10.1021/cr100383r
[3] Armenta-López, R., Guerrero, I.L., Huerta, S., 2002. Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J. Food Sci. 67, 1002-1006. doi: 10.1111/j.1365-2621.2002.tb09443.x
[4] Arvanitoyannis, I.S., Kassaveti, A., 2008. Fish industry waste:treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 43, 726-745. doi: 10.1111/j.1365-2621.2006.01513.x
[5] Azuma, K., Osaki, T., Wakuda, T., Tsuka, T., Imagawa, T., Okamoto, Y., Minami, S., 2012. Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation 35, 1462-1465. doi: 10.1007/s10753-012-9459-0
[6] Bajaj, M., Winter, J., Gallert, C., 2011. Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem. Eng. J. 56, 51-62. doi: 10.1016/j.bej.2011.05.006
[7] Bautista, J., Jover, M., Gutierrez, J.F., Corpas, R., Cremades, O., Fontiveros, E., Iglesias, F., Vega, J., 2001. Preparation of crayfish chitin by in situ lactic acid production. Process. Biochem. 37, 229-234. doi: 10.1016/S0032-9592(01)00202-3
[8] Benhabiles, M.S., Salah, R., Lounici, H., Drouiche, N., Goosen, M.F.A., Mameri, N., 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29, 48-56. doi: 10.1016/j.foodhyd.2012.02.013
[9] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965-977. http://europepmc.org/abstract/MED/18761143
[10] Bi, W., Tian, M., Zhou, J., Row, K.H., 2010. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 2243-2248. doi: 10.1016/j.jchromb.2010.06.034
[11] Bozorgpour, F., Ramandi, H.F., Jafari, P., Samadi, S., Yazd, S.S., Aliabadi, M., 2016. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent:comparison with chitosan/Al2O3/Fe3O4 beads. Int. J. Biol. Macromol. 93, 557-565. doi: 10.1016/j.ijbiomac.2016.09.015
[12] Brett, D.J., Atkinson, A., Brandon, N.P., Skinner, S.J., 2008. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568-1578. doi: 10.1039/b612060c
[13] Bridgwater, A.V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68-94. doi: 10.1016/j.biombioe.2011.01.048
[14] Bueno-Solano, C., López-Cervantes, J., Campas-Baypoli, O.N., Lauterio-García, R., Adan-Bante, N.P., Sánchez-Machado, D.I., 2009. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 112, 671-675. doi: 10.1016/j.foodchem.2008.06.029
[15] Cai, Y.X., Xia, C., Wang, B.Y., Zhang, W., Wang, Y., Zhu, B., 2017. Bioderived calcite as electrolyte for solid oxide fuel cells:a strategy toward utilization of waste shells. ACS Sustain. Chem. Eng. 5, 10387-10395. doi: 10.1021/acssuschemeng.7b02406
[16] Cao, W., Tan, C., Zhan, X., Li, H., Zhang, C., 2014. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste. Food Chem. 164, 136-141. doi: 10.1016/j.foodchem.2014.05.042
[17] Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., Sun, Z., 2007. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J. Hazard Mater. 139, 293-300. doi: 10.1016/j.jhazmat.2006.06.034
[18] Cheung, I.W.Y., Li-Chan, E.C.Y., 2010. Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chem. 122, 1003-1012. doi: 10.1016/j.foodchem.2010.03.057
[19] de Holanda, H.D., Netto, F.M., 2006. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci. 71, C298-C303. doi: 10.1111/j.1750-3841.2006.00040.x
[20] Devi, R., Dhamodharan, R., 2018. Sustainable process for separating chitin and simultaneous synthesis of carbon nanodots from shellfish waste using 2% aqueous urea solution. ACS Sustain. Chem. Eng. 6, 11313-11325. doi: 10.1021/acssuschemeng.8b00877
[21] Du, J., Tan, E., Kim, H.J., Zhang, A., Bhattacharya, R., Yarema, K.J., 2014. Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr. Polym. 99, 483-490. doi: 10.1016/j.carbpol.2013.08.050
[22] Dun, Y.H., Li, Y.Q., Xu, J.H., Hu, Y.L., Zhang, C.Y., Liang, Y.X., Zhao, S.M., 2019. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int. J. Biol. Macromol. 123, 420-426. doi: 10.1016/j.ijbiomac.2018.11.088
[23] Elizabeth, I., Singh, B.P., Trikha, S., Gopukumar, S., 2016. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium Ion batteries. J. Power Sources 329, 412-421. doi: 10.1016/j.jpowsour.2016.08.106
[24] Fang, G., Liu, C., Gao, J., Dionysiou, D.D., Zhou, D., 2015. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 49, 5645-5653. doi: 10.1021/es5061512
[25] Gamage, A., Shahidi, F., 2007. Use of chitosan for the removal of metal Ion contaminants and proteins from water. Food Chem. 104, 989-996. doi: 10.1016/j.foodchem.2007.01.004
[26] Gao, C., Zhang, A., Chen, K.Q., Hao, Z.K., Tong, J.M., Ouyang, P.K., 2015. Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochem. Eng. J. 97, 59-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2497b81f9b13e0e869f879b31462d32b
[27] Gildberg, A., Stenberg, E., 2001. A new process for advanced utilisation of shrimp waste. Process. Biochem. 36, 809-812. doi: 10.1016/S0032-9592(00)00278-8
[28] Guo, J., Song, Y., Ji, X., Ji, L., Cai, L., Wang, Y., Zhang, H., Song, W., 2019. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 12, DOI: 10.3390/ma12020241.
[29] Hamed, I., zogul, F., Regenstein, J.M., 2016. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides):a review. Trends Food Sci. Technol. 48, 40-50. doi: 10.1016/j.tifs.2015.11.007
[30] Handayani, A.D., Sutrisno, Indraswati, N., Ismadji, S., 2008. Extraction of astaxanthin from giant tiger (Panaeus Monodon) shrimp waste using palm oil:studies of extraction kinetics and thermodynamic. Bioresour. Technol. 99, 4414-4419. doi: 10.1016/j.biortech.2007.08.028
[31] He, F., Ma, F., Li, J.L., Li, T., Li, G.X., 2014. Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles. Ceram. Int. 40, 6441-6446. doi: 10.1016/j.ceramint.2013.11.094
[32] Huang, J.B., Mao, Z.Q., Liu, Z.X., Wang, C., 2007. Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem. Commun. 9, 2601-2605. doi: 10.1016/j.elecom.2007.07.036
[33] Huang, S., Wang, L.M., Sivendiran, T., Bohrer, B.M., 2018. Review:amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 58, 2673-2678. doi: 10.1080/10408398.2017.1396202
[34] Irna, C., Jaswir, I., Othman, R., Jimat, D.N., 2018. Comparison between high-pressure processing and chemical extraction:astaxanthin yield from six species of shrimp carapace. J. Diet. Suppl. 15, 805-813. doi: 10.1080/19390211.2017.1387885
[35] Kaur, S., Dhillon, G.S., 2015. Recent trends in biological extraction of chitin from marine shell wastes:a review. Crit. Rev. Biotechnol. 35, 44-61. doi: 10.3109/07388551.2013.798256
[36] Kaya, M., Baran, T., Karaarslan, M., 2015. A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat. Prod. Res. 29, 1477-1480. doi: 10.1080/14786419.2015.1026341
[37] Kohsari, I., Shariatinia, Z., Pourmortazavi, S.M., 2016. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr. Polym. 140, 287-298. doi: 10.1016/j.carbpol.2015.12.075
[38] Kumari, S., Kumar Annamareddy, S.H., Abanti, S., Kumar Rath, P., 2017. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 104, 1697-1705. doi: 10.1016/j.ijbiomac.2017.04.119
[39] Lee, M.Y., Hong, K.J., Kajiuchi, T., Yang, J.W., 2004. Determination of the efficiency and removal mechanism of cobalt by crab shell particles. J. Chem. Technol. Biotechnol. 79, 1388-1394. doi: 10.1002/jctb.1139
[40] Liang, C., Li, Z., Dai, S., 2008. Mesoporous carbon materials:synthesis and modification. Angew. Chem. Int. Ed. Engl. 47, 3696-3717. doi: 10.1002/anie.200702046
[41] Lim, K.C., Yusoff, F.M., Shariff, M., Kamarudin, M.S., 2018. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 10, 738-773. doi: 10.1111/raq.12200
[42] Liu, R.R., Zhang, H.M., Liu, S.W., Zhang, X., Wu, T.X., Ge, X., Zang, Y.P., Zhao, H.J., Wang, G.Z., 2016. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 18, 4095-4101. doi: 10.1039/C5CP06970J
[43] Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of biochar-based functional materials:toward a sustainable platform carbon material. Chem. Rev. 115, 12251-12285. doi: 10.1021/acs.chemrev.5b00195
[44] Long, L., Xue, Y.W., Zeng, Y.F., Yang, K., Lin, C.J., 2017. Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. J. Clean. Prod. 166, 1244-1252. doi: 10.1016/j.jclepro.2017.08.122
[45] Mahdy Samar, M., El-Kalyoubi, M.H., Khalaf, M.M., Abd El-Razik, M.M., 2013. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 58, 33-41. doi: 10.1016/j.aoas.2013.01.006
[46] Mondal, A.K., Kretschmer, K., Zhao, Y.F., Liu, H., Fan, H.B., Wang, G.X., 2017. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium Ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72-80. doi: 10.1016/j.micromeso.2017.03.019
[47] Morris, A., Beeram, S., Hardaway, C.J., Richert, J.C., Sneddon, J., 2012. Use of ground crawfish shells for the removal of chromium in solution. Microchem. J. 105, 2-8. doi: 10.1016/j.microc.2012.06.009
[48] Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Garcia, H., 2014. ChemInform abstract:carbocatalysis by graphene-based materials. Chem. Rev. 114, 6179-6212. doi: 10.1021/cr4007347
[49] Nú ez-Gómez, D., Alves, A.A.D.A., Lapolli, F.R., Lobo-Recio, M.A., 2017. Aplication of the statistical experimental design to optimize mine-impacted water (MIW) remediation using shrimp-shell. Chemosphere 167, 322-329. doi: 10.1016/j.chemosphere.2016.09.094
[50] Oguz, E., 2005. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag. J. Colloid Interface Sci. 281, 62-67. doi: 10.1016/j.jcis.2004.08.074
[51] Oliveira Cavalheiro, J.M., Oliveira de Souza, E., Bora, P.S., 2007. Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresour. Technol. 98, 602-606. doi: 10.1016/j.biortech.2006.02.018
[52] Park, J.H., Wang, J.J., Xiao, R., Zhou, B.Y., Delaune, R.D., Seo, D.C., 2018. Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char. J. Colloid Interface Sci. 525, 143-151. doi: 10.1016/j.jcis.2018.04.078
[53] Parvez, S., Rahman, M.M., Khan, M.A., Khan, M.A.H., Islam, J.M.M., Ahmed, M., Rahman, M.F., Ahmed, B., 2012. Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym. Bull. 69, 715-731. doi: 10.1007/s00289-012-0761-7
[54] Peng, Q., Nunes, L.M., Greenfield, B.K., Dang, F., Zhong, H., 2016. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environ. Int. 88, 261-268. doi: 10.1016/j.envint.2015.12.035
[55] Prochaska, C.A., Zouboulis, A.I., 2006. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol. Eng. 26, 293-303. doi: 10.1016/j.ecoleng.2005.10.009
[56] Qin, L., Zhou, Z.P., Dai, J.D., Ma, P., Zhao, H.B., He, J.S., Xie, A., Li, C.X., Yan, Y.S., 2016. Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol. J. Taiwan Inst. Chem. Eng. 62, 228-238. doi: 10.1016/j.jtice.2016.02.009
[57] Qu, J.Y., Lv, S., Peng, X.Y., Tian, S., Wang, J., Gao, F., 2016. Nitrogen-doped porous "green carbon" derived from shrimp shell:combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. J. Alloy. Compd. 671, 17-23. doi: 10.1016/j.jallcom.2016.02.064
[58] Rech, A.S., Rech, J.C., Caprario, J., Tasca, F.A., Recio, M.,L., Finotti, A.R., 2019. Use of shrimp-shell for adsorption of metals present surface runoff. Water Sci. Technol. 79, 2221-2230. doi: 10.2166/wst.2019.213
[59] Riva, R., Ragelle, H., des Rieux, A., Duhem, N., Jér me, C., Préat, V., 2011. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Berlin, Heidelberg:Springer Berlin Heidelberg, 19-44.
[60] Rødde, R.H., Einbu, A., V rum, K.M., 2008. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 71, 388-393. doi: 10.1016/j.carbpol.2007.06.006
[61] Sachindra, N.M., Bhaskar, N., Mahendrakar, N.S., 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag. 26, 1092-1098. doi: 10.1016/j.wasman.2005.07.002
[62] Sachindra, N.M., Bhaskar, N., Siddegowda, G.S., Sathisha, A.D., Suresh, P.V., 2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol. 98, 1642-1646. doi: 10.1016/j.biortech.2006.05.041
[63] Sachindra, N.M., Mahendrakar, N.S., 2005. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 96, 1195-1200. doi: 10.1016/j.biortech.2004.09.018
[64] Samar, M.M., El-Kalyoubi, M.H., Khalaf, M.M., Abd El-Razik, M.M., 2013. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Annals Agr. Sci. 58, 33-41. doi: 10.1016/j.aoas.2013.01.006
[65] Seyfarth, F., Schliemann, S., Elsner, P., Hipler, U.C., 2008. Antifungal effect of high-and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int. J. Pharm. 353, 139-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c94d6075cc12a7c67f16ea442e4c40d8
[66] Sini, T.K., Santhosh, S., Mathew, P.T., 2007. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr. Res. 342, 2423-2429. doi: 10.1016/j.carres.2007.06.028
[67] Sugawara, A., Nishimura, T., Yamamoto, Y., Inoue, H., Nagasawa, H., Kato, T., 2006. Self-organization of oriented calcium carbonate/polymer composites:effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chem. Int. Ed. Engl. 45, 2876-2879. doi: 10.1002/anie.200503800
[68] Taher, F.A., Ibrahim, S.A., El-Aziz, A.A., Abou El-Nour, M.F., El-Sheikh, M.A., El-Husseiny, N., Mohamed, M.M., 2019. Anti-proliferative effect of chitosan nanoparticles (extracted from crayfish Procambarus clarkii, Crustacea:Cambaridae) against MDA-MB-231 and SK-BR-3 human breast cancer cell lines. Int. J. Biol. Macromol. 126, 478-487. doi: 10.1016/j.ijbiomac.2018.12.151
[69] Tudor, H.E.A., Gryte, C.C., Harris, C.C., 2006. Seashells:detoxifying agents for metal-contaminated waters. Water Air Soil Pollut. 173, 209-242. doi: 10.1007/s11270-005-9060-3
[70] Varma, A.J., Deshpande, S.V., Kennedy, J.F., 2004. Metal complexation by chitosan and its derivatives:a review. Carbohydr. Polym. 55, 77-93. doi: 10.1016/j.carbpol.2003.08.005
[71] Verlee, A., Mincke, S., Stevens, C.V., 2017. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 164, 268-283. doi: 10.1016/j.carbpol.2017.02.001
[72] Visioli, F., Artaria, C., 2017. Astaxanthin in cardiovascular health and disease:mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 8, 39-63. doi: 10.1039/C6FO01721E
[73] Wang, J., Liao, Z., Ifthikar, J., Shi, L., Du, Y., Zhu, J., Xi, S., Chen, Z., Chen, Z., 2017. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 185, 754-763. doi: 10.1016/j.chemosphere.2017.07.084
[74] Wang, L., Zheng, Y., Wang, X., Chen, S., Xu, F., Zuo, L., Wu, J., Sun, L., Li, Z., Hou, H., Song, Y., 2014. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-Ion batteries. ACS Appl. Mater. Interfaces 6, 7117-7125. doi: 10.1021/am406053s
[75] Wang, Q.L., Zheng, H.Z., Long, Y.J., Zhang, L.Y., Gao, M., Bai, W.J., 2011a. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49, 3134-3140. doi: 10.1016/j.carbon.2011.03.041
[76] Wang, X., Lee, J.S., Zhu, Q., Liu, J., Wang, Y., Dai, S., 2010. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22, 2178-2180. doi: 10.1021/cm100139d
[77] Wang, X.D., Ma, Y., Li, S.H., Kashyout, A.H., Zhu, B., Muhammed, M., 2011b. Ceria-based nanocomposite with simultaneous proton and oxygen Ion conductivity for low-temperature solid oxide fuel cells. J. Power Sources 196, 2754-2758. doi: 10.1016/j.jpowsour.2010.11.033
[78] Wei, G., Zhang, A., Chen, K., Ouyang, P., 2017. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization. Carbohydr Polym. 171, 236-241. doi: 10.1016/j.carbpol.2017.05.028
[79] Xiao, Y.L., Xue, Y.W., Gao, F., Mosa, A., 2017. Sorption of heavy metal ions onto crayfish shell biochar:effect of pyrolysis temperature, pH and ionic strength. J. Taiwan Inst. Chem. Eng. 80, 114-121. http://www.sciencedirect.com/science/article/pii/S1876107017304388
[80] Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., Islam, E., 2008. Phosphate removal from solution using steel slag through magnetic separation. J. Hazard Mater. 152, 211-215. doi: 10.1016/j.jhazmat.2007.06.103
[81] Xu, G., Ding, B., Nie, P., Shen, L., Dou, H., Zhang, X., 2014. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 194-199. doi: 10.1021/am4038728
[82] Xu, Q., Li, J.Y., Sun, J.K., Yin, Y.X., Wan, L.J., Guo, Y.G., 2017. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-Ion battery anodes. Adv. Energy Mater. 7, 1601481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=215e2f00108d95f68cc4f51a1ea09251
[83] Yaman, S., 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45, 651-671. doi: 10.1016/S0196-8904(03)00177-8
[84] Yan, J.P., Xue, Y.W., Long, L., Zeng, Y.F., Hu, X.L., 2018. Adsorptive removal of As(V) by crawfish shell biochar:batch and column tests. Environ. Sci. Pollut. Res. 25, 34674-34683. doi: 10.1007/s11356-018-3384-1
[85] Yang, L.G., Zhang, A.Q., Zheng, X.S., 2009. Shrimp shell catalyst for biodiesel production. Energy Fuels 23, 3859-3865. doi: 10.1021/ef900273y
[86] Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., Yang, L., 2013. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues:characterization and phosphate removal potential. Bioresour. Technol. 138, 8-13. doi: 10.1016/j.biortech.2013.03.057
[87] Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L., 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard Mater. 190, 501-507. doi: 10.1016/j.jhazmat.2011.03.083
[88] Yin, H.B., Yan, X.W., Gu, X.H., 2017. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands. Water Res. 115, 329-338. doi: 10.1016/j.watres.2017.03.014
[89] Yu, J.F., Tang, L., Pang, Y., Zeng, G.M., Feng, H.P., Zou, J.J., Wang, J.J., Feng, C.Y., Zhu, X., Ouyang, X.L., Tan, J.S., 2020. Hierarchical porous biochar from shrimp shell for persulfate activation:a two-electron transfer path and key impact factors. Appl. Catal. B:Environ. 260, 118160. http://www.sciencedirect.com/science/article/pii/S0926337319309075
[90] Zeng, Y.F., Xue, Y.W., Long, L., Yan, J.P., 2019. Novel crayfish shell biochar nanocomposites loaded with Ag-TiO2 nanoparticles exhibit robust antibacterial activity. Water Air Soil Pollut. 230, 50. doi: 10.1007/s11270-019-4104-2
[91] Zhang, H.M., Kang, S.H., Wang, G.Z., Zhang, Y.X., Zhao, H.J., 2016a. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens. 1, 875-881. doi: 10.1021/acssensors.6b00269
[92] Zhang, H.Z., Chen, C.R., Gray, E.M., Boyd, S.E., Yang, H., Zhang, D.K., 2016b. Roles of biochar in improving phosphorus availability in soils:a phosphate adsorbent and a source of available phosphorus. Geoderma 276, 1-6. doi: 10.1016/j.geoderma.2016.04.020
[93] Zhao, M., Xu, Y., Zhang, C., Rong, H., Zeng, G., 2016. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 100, 6509-6518. doi: 10.1007/s00253-016-7646-x
[94] Zheng, X.D., Li, B., Zhu, B., Kuang, R., Kuang, X., Xu, B.L., Ma, M.H., 2010. Crayfish carapace micro-powder (CCM):a novel and efficient adsorbent for heavy metal Ion removal from wastewater. Water 2, 257-272. doi: 10.3390/w2020257
[95] Zhou, D., Zhang, L., Zhou, J., Guo, S., 2004. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res. 38, 2643-2650. doi: 10.1016/j.watres.2004.03.026
[96] Zuo, X.X., Zhu, J., Müller-Buschbaum, P., Cheng, Y.J., 2017. Silicon based lithium-Ion battery anodes:a chronicle perspective review. Nano Energy 31, 113-143. doi: 10.1016/j.nanoen.2016.11.013