Volume 5 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
Feixiang Guan, Zhaoping Song, Furong Xin, Huili Wang, Dehai Yu, Guodong Li, Wenxia Liu. Preparation of hydrophobic transparent paper via using polydi-methylsiloxane as transparent agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 37-43. doi: 10.1016/j.jobab.2020.03.004
Citation: Feixiang Guan, Zhaoping Song, Furong Xin, Huili Wang, Dehai Yu, Guodong Li, Wenxia Liu. Preparation of hydrophobic transparent paper via using polydi-methylsiloxane as transparent agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 37-43. doi: 10.1016/j.jobab.2020.03.004

Preparation of hydrophobic transparent paper via using polydi-methylsiloxane as transparent agent

doi: 10.1016/j.jobab.2020.03.004
Funds:

the financial support from National Natural Science Foundation of China 31270625

the financial support from National Natural Science Foundation of China 21506105

Major Program of Shandong Province Natural Science Foundation ZR2018ZC0842

More Information
  • Transparent paper with good hydrophobicity and flexibility was expected to act as an alternative substrate in fabrication of flexible electronics. However, conventional paper made of cellulose fibers was opaque and hydrophilic without undergoing special processing. Herein, cellulose fiber paper was treated by impregnating with hydrolyzed tetraethyl orthosilicate (TEOS) followed by coating with hydrophobic polydimethylsiloxane (PDMS) to prepare hydrophobic transparent paper. The results showed that silica nanoparticles produced by the TEOS hydrolysis improved the paper transparency to some extent, increased the paper thermal stability, but still remained the hydrophilicity of paper. After the paper was further coated with the PDMS and the PDMS was consolidated, the paper became clearly transparent and hydrophobic. The processed paper had a transmittance of more than 90% at 550 nm. The water contact angle of the paper reached about 110°. This work provided a new approach for the fabrication of hydrophobic transparent paper with conventional cellulose fiber paper.

     

  • loading
  • Abbasi, F., Mirzadeh, H., Katbab, A.A., 2001. Modification of polysiloxane polymers for biomedical applications:a review. Polym. Int. 50, 1279-1287. doi: 10.1002/pi.783
    Abdul Khalil, H.P.S., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M., 2014. Production and modification of nanofibrillated cellulose using various mechanical processes:a review. Carbohydr. Polym. 99, 649-665. doi: 10.1016/j.carbpol.2013.08.069
    Agate, S., Joyce, M., Lucia, L., Pal, L., 2018. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites-A review. Carbohydr. Polym. 198, 249-260. doi: 10.1016/j.carbpol.2018.06.045
    Ansari, F., Galland, S., Johansson, M., Plummer, C.J.G., Berglund, L.A., 2014. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos. Part A:Appl. Sci. Manuf. 63, 35-44. doi: 10.1016/j.compositesa.2014.03.017
    Bachmann, K., 1983. The treatment of transparent papers:a review. The B. Pap. Annu. 2, 3-13. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3833472
    Bayer, I.S., Fragouli, D., Attanasio, A., Sorce, B., Bertoni, G., Brescia, R., di Corato, R., Pellegrino, T., Kalyva, M., Sabella, S., Pompa, P.P., Cingolani, R., Athanassiou, A., 2011. Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl. Mater. Interfaces 3, 4024-4031. doi: 10.1021/am200891f
    Bodas, D., Khan-Malek, C, 2007. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment:an SEM investigation. Sensor Actuat. B:Chem. 123, 368-373. doi: 10.1016/j.snb.2006.08.037
    Bouramtane, S., Bretin, L., Pinon, A., Leger, D., Liagre, B., Richard, L., Brégier, F., Sol, V., Chaleix, V., 2019. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydr. Polym. 213, 168-175.
    Cappelletto, E., Callone, E., Campostrini, R., Girardi, F., Maggini, S., della Volpe, C., Siboni, S., di Maggio, R., 2012. Hydrophobic siloxane paper coatings:the effect of increasing methyl substitution. J. Sol-Gel Sci. Technol. 62, 441-452. doi: 10.1007/s10971-012-2747-1
    Charreau, H., Foresti, M.L., Vazquez, A., 2012. Nanocellulose patents trends:a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents Nanotechnol. 7, 56-80. doi: 10.2174/1872210511307010056
    Chen H., Liu W., 2016. Cellulose-based photocatalytic paper with Ag2O nanoparticles loaded on graphite fibers. J. of Bioresour. and Bioprod. 1(4), 192-198.
    de Menezes Atayde, C., Doi, I., 2010. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys. Status Solidi C 7, 189-192. doi: 10.1002/pssc.200982419
    Ewulonu C. M., Liu X., Wu M., Huang Y., 2019. Lignin-containing cellulose nanomaterials:a promising new nanomaterial for numerous ap-plications. J. Bioresour. Bioprod. 4(1), 3-10. https://www.sciencedirect.com/science/article/pii/S2369969820300323
    Fang, Z.Q., Zhu, H.L., Preston, C., Hu, L.B., 2014. Development, application and commercialization of transparent paper. Transl. Mater. Res. 1, 015004. doi: 10.1088/2053-1613/1/1/015004
    Gullo, M., La China, S., Falcone, P.M., Giudici, P., 2018. Biotechnological production of cellulose by acetic acid bacteria:current state and perspectives. Appl. Microbiol. Biotechnol. 102, 6885-6898. doi: 10.1007/s00253-018-9164-5
    Han, Q.Q., Gao, X., Zhang, H., Chen, K.L., Peng, L.C., Jia, Q.M., 2019. Preparation and comparative assessment of regenerated cellulose films from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution. Carbohydr. Polym. 218, 315-323. doi: 10.1016/j.carbpol.2019.04.083
    Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71-85. doi: 10.1039/C0NR00583E
    Jin, M.H., Feng, X.J., Xi, J.M., Zhai, J., Cho, K., Feng, L., Jiang, L., 2005. Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid Commun. 26, 1805-1809. doi: 10.1002/marc.200500458
    Klemm, D., Heublein, B., Fink, H.P., Bohn, A., 2005. Cellulose:fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393. doi: 10.1002/anie.200460587
    Lavoratti, A., Scienza, L.C., Zattera, A.J., 2016. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr. Polym. 136, 955-963. doi: 10.1016/j.carbpol.2015.10.008
    Li, S., Qi, D.M., Huang, J.G., 2018. Natural cellulose based self-assembly towards designed functionalities. Curr. Opin. Colloid Interface Sci. 35, 1-8. doi: 10.1016/j.cocis.2017.12.008
    Li, Z.Z., Liu, W.X., Guan, F.X., Li, G.D., Song, Z.P., Yu, D.H., Wang, H.L., Liu, H., 2019. Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydr. Polym. 214, 26-33. doi: 10.1016/j.carbpol.2019.03.019
    Liu, W.X., Ni, Y.H., Xiao, H.N., 2004. Montmorillonite intercalated with polyaminoamide-epichlorohydrin:preparation, characterization, and sorption behavior. J. Colloid Interface Sci. 275, 584-589. doi: 10.1016/j.jcis.2004.02.008
    Nechyporchuk, O., Belgacem, M.N., Bras, J., 2016. Production of cellulose nanofibrils:a review of recent advances. Ind. Crop. Prod. 93, 2-25. doi: 10.1016/j.indcrop.2016.02.016
    Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., 2009. Optically transparent nanofiber paper. Adv. Mater. 21, 1595-1598. doi: 10.1002/adma.200803174
    Osong, S.H., Norgren, S., Engstrand, P., 2016. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking:a review. Cellulose 23, 93-123. doi: 10.1007/s10570-015-0798-5
    Poletto, M., Ornaghi, H., Zattera, A., 2014. Native cellulose:structure, characterization and thermal properties. Materials 7, 6105-6119. doi: 10.3390/ma7096105
    Qin, Z.Z., Liu, W.X., Chen, H.B., Chen, J., Wang, H.L., Song, Z.P., 2019. Preparing photocatalytic paper with improved catalytic activity by in situ loading poly-dopamine on cellulose fibre. Bull. Mater. Sci. 42, 54. doi: 10.1007/s12034-019-1736-1
    Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, J.M., Zhang, J., Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr. Polym. 188, 85-91. doi: 10.1016/j.carbpol.2018.01.110
    Seabra, A.B., Bernardes, J.S., Fávaro, W.J., Paula, A.J., Durán, N, 2018. Cellulose nanocrystals as carriers in medicine and their toxicities:a review. Carbohydr. Polym. 181, 514-527. doi: 10.1016/j.carbpol.2017.12.014
    Wang X., Li H., Cao Y., Tang Q., 2011. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour. Technol. 102, 7959-7965. doi: 10.1016/j.biortech.2011.05.064
    Wang, J.X., Liu, W.X., Li, H.D., Wang, H.L., Wang, Z., Zhou, W.J., Liu, H., 2013. Preparation of cellulose fiber-TiO2 nanobelt-silver nanopar-ticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem. Eng. J. 228, 272-280. doi: 10.1016/j.cej.2013.04.098
    Wang, S.X., Mahlberg, R., Nikkola, J., Mannila, J., Jämsä, S., Ritschkoff, A.C., Peltonen, J., 2012. Surface characteristics and wetting properties of Sol-gel coated base paper. Surf. Interface Anal. 44, 539-547. doi: 10.1002/sia.3841
    Wang, X.D., Yao, C.H., Wang, F., Li, Z.D., 2017a. Cellulose-based nanomaterials for energy applications. Small 13, 1702240. doi: 10.1002/smll.201702240
    Wang, Z.H., Yao, Z.J., Zhou, J.T., Zhang, Y., 2017b. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr. Polym. 157, 945-952. doi: 10.1016/j.carbpol.2016.10.044
    Xie, J., Hu, J., Lin, X.D., Fang, L., Wu, F., Liao, X.L., Luo, H.J., Shi, L.T., 2018. Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles. Appl. Surf. Sci. 457, 870-880. doi: 10.1016/j.apsusc.2018.06.250
    Zhang, Y., Zhang, L.N., Cui, K., Ge, S.G., Cheng, X., Yan, M., Yu, J.H., Liu, H., 2018. Paper-based electronics: flexible electronics based on micro/nanostructured paper (adv. Mater. 51/2018). Adv. Mater. 30, 1870394.
    Zheng, X., Huang, F., Chen, L.H., Huang, L.L., Cao, S.L., Ma, X.J., 2019. Preparation of transparent film via cellulose regeneration:Correlations between ionic liquid and film properties. Carbohydr. Polym. 203, 214-218. doi: 10.1016/j.carbpol.2018.09.060
    Zhu, H.L., Fang, Z.Q., Preston, C., Li, Y.Y., Hu, L.B., 2014. Transparent paper:fabrications, properties, and device applications. Energy Environ. Sci. 7, 269-287 doi: 10.1039/C3EE43024C
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1456) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return