Citation: | Zhenghao Xia, Jinyang Li, Jinming Zhang, Xiaocheng Zhang, Xuejing Zheng, Jun Zhang. Processing and Valorization of Cellulose, Lignin and Lignocellulose Using Ionic Liquids[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95. doi: 10.1016/j.jobab.2020.04.001 |
Abdulkhani, A., Hojati Marvast, E., Ashori, A., Karimi, A.N., 2013. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr. Polym. 95, 57-63. doi: 10.1016/j.carbpol.2013.02.040
|
Abou-Saleh, R.H., Hernandez-Gomez, M.C., Amsbury, S., Paniagua, C., Bourdon, M., Miyashima, S., Helariutta, Y., Fuller, M., Budtova, T., Connell, S.D., Ries, M.E., Benitez-Alfonso, Y., 2018. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat. Commun. 9, 4538. https://www.ncbi.nlm.nih.gov/pubmed/30382102
|
Abushammala, H., Krossing, I., Laborie, M.P., 2015. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 134, 609-616. doi: 10.1016/j.carbpol.2015.07.079
|
Akiba, T., Tsurumaki, A., Ohno, H., 2017. Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem. 19, 2260-2265. doi: 10.1039/C7GC00626H
|
Asaadi, S., Hummel, M., Ahvenainen, P., Gubitosi, M., Olsson, U., Sixta, H., 2018. Structural analysis of Ioncell-F fibres from birch wood. Carbohydr. Polym. 181, 893-901. doi: 10.1016/j.carbpol.2017.11.062
|
Becherini, S., Mitmoen, M., Tran, C.D., 2019. Natural sporopollenin microcapsules facilitated encapsulation of phase change material into cellulose composites for smart and biocompatible materials. ACS Appl. Mater. Interfaces 11, 44708-44721. doi: 10.1021/acsami.9b15530
|
Berton, P., Shen, X.P., Rogers, R.D., Shamshina, J.L., 2019.110th anniversary:high-molecular-weight chitin and cellulose hydrogels from biomass in ionic liquids without chemical crosslinking. Ind. Eng. Chem. Res. 58, 19862-19876. doi: 10.1021/acs.iecr.9b03078
|
Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550. doi: 10.1039/c2gc36364j
|
Buchtová, N., Pradille, C., Bouvard, J.L., Budtova, T., 2019. Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15, 7901-7908. doi: 10.1039/C9SM01028A
|
Byrne, N., Chen, J.Y., Fox, B., 2014. Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J. Mater. Chem. A 2, 15758-15762. doi: 10.1039/C4TA04059G
|
Chang, L.M., Zhang, J.M., Chen, W.W., Zhang, M., Yin, C.C., Tian, W.G., Luo, Z., Liu, W.L., He, J.S., Zhang, J., 2018. Controllable synthesis of cellulose benzoates for understanding of chiral recognition mechanism and fabrication of highly efficient chiral stationary phases. Anal. Methods 10, 2844-2853. doi: 10.1039/C8AY00162F
|
Chen, J.H., Xu, J.K., Wang, K., Qian, X.R., Sun, R.C., 2015a. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 7, 15641-15648. doi: 10.1021/acsami.5b04462
|
Chen, L., Xin, J.Y., Ni, L.L., Dong, H.X., Yan, D.X., Lu, X.M., Zhang, S.J., 2016. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chem. 18, 2341-2352. doi: 10.1039/C5GC03121D
|
Chen, W.W., Ding, M.C., Zhang, M., Zhang, J.M., Gao, X., He, J.S., Zhang, J., 2015c. Chiral separation abilities of homogeneously synthesized cellulose 3, 5-dimethylphenylcarbamates:Influences of degree of substitution and molecular weight. Chin. J. Polym. Sci. 33, 1633-1639. doi: 10.1007/s10118-015-1695-y
|
Chen, W.W., Zhang, M., Feng, Y., Wu, J., Gao, X., Zhang, J.M., He, J.S., Zhang, J., 2015b. Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition. Polym. Int. 64, 1037-1044. doi: 10.1002/pi.4884
|
Chen, Z.Y., Zhang, J.M., Xiao, P., Tian, W.G., Zhang, J., 2018. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustainable Chem. Eng. 6, 4931-4939. doi: 10.1021/acssuschemeng.7b04466
|
Cheng, F.C., Wang, H., Rogers, R.D., 2014. Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sustainable Chem. Eng. 2, 2859-2865. doi: 10.1021/sc500614m
|
Chu, Y.H., He, X.Z., 2019. MoDoop:an automated computational approach for COSMO-RS prediction of biopolymer solubilities in ionic liquids. ACS Omega 4, 2337-2343. doi: 10.1021/acsomega.8b03255
|
de Gregorio, G.F., Prado, R., Vriamont, C., Erdocia, X., Labidi, J., Hallett, J.P., Welton, T., 2016. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustainable Chem. Eng. 4, 6031-6036. doi: 10.1021/acssuschemeng.6b01339
|
Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T, 2015. Cellulose-silica aerogels. Carbohydr Polym 122, 293-300. doi: 10.1016/j.carbpol.2015.01.022
|
Du, J.H., Wen, Y., Chen, H.X., Chen, Q., Xie, H.B., 2018. Synthesis and property study of cellulose methyl carbonate in DMSO/DBU/CO2 system via in situ organocatalysis. Sci. Sin.-Chim 48, 512-517. doi: 10.1360/N032018-00012
|
Duan, Y.Q., Freyburger, A., Kunz, W., Zollfrank, C., 2018. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem. Eng. 6, 6965-6973. doi: 10.1021/acssuschemeng.8b00805
|
Duri, S., Tran, C.D., 2013. Supramolecular composite materials from cellulose, chitosan, and cyclodextrin:facile preparation and their selective inclusion complex formation with endocrine disruptors. Langmuir 29, 5037-5049. doi: 10.1021/la3050016
|
Duri, S., Tran, C.D., 2014. Enantiomeric selective adsorption of amino acid by polysaccharide composite materials. Langmuir 30, 642-650. doi: 10.1021/la404003t
|
Durkin, D.P., Frank, B.P., Haverhals, L.M., Howard Fairbrother, D., de Long, H.C., Trulove, P.C., 2019. Engineering lignocellulose fibers with higher thermal stability through natural fiber welding. Macromol. Mater. Eng. 304, 1900042. doi: 10.1002/mame.201900042
|
Durkin, D.P., Ye, T., Larson, E.G., Haverhals, L.M., Livi, K.J.T., de Long, H.C., Trulove, P.C., Fairbrother, D.H., Shuai, D.M., 2016. Ligno-cellulose fiber- and welded fiber- supports for palladium-based catalytic hydrogenation:a natural fiber welding application for water treatment. ACS Sustainable Chem. Eng. 4, 5511-5522. doi: 10.1021/acssuschemeng.6b01250
|
Ewulonu, C.M., Liu, X. R., Wu, M., Huang, Y., 2019. Lignin-containing cellulose nanomaterials:a promising new nanomaterial for numerous applications. J. Bioresour. Bioprod. 4, 3-10. https://www.sciencedirect.com/science/article/pii/S2369969820300323
|
Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G., Rogers, R.D., 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9, 63-69. doi: 10.1039/B607614A
|
Granström, M., née Pääkkö, M.K., Jin, H., Kolehmainen, E., Kilpeläinen, I., Ikkala, O., 2011. Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2, 1789. doi: 10.1039/c0py00309c
|
Guterman, R., Molinari, V., Josef, E., 2019. Ionic liquid lignosulfonate:dispersant and binder for preparation of biocomposite materials. Angew. Chem. Int. Ed. 58, 13044-13050. doi: 10.1002/anie.201907385
|
Hadadi, A., Whittaker, J.W., Verrill, D.E., Hu, X., Larini, L., Salas-de la Cruz, D., 2018. A hierarchical model to understand the processing of polysaccharides/protein-based films in ionic liquids. Biomacromolecules 19, 3970-3982. doi: 10.1021/acs.biomac.8b00903
|
Hamada, Y., Yoshida, K., Asai, R.I., Hayase, S., Nokami, T., Izumi, S., Itoh, T., 2013. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem. 15, 1863. doi: 10.1039/c3gc40445e
|
Haq, M.A., Habu, Y., Yamamoto, K., Takada, A., Kadokawa, J.I., 2019. Ionic liquid induces flexibility and thermoplasticity in cellulose film. Carbohydr. Polym. 223, 115058. doi: 10.1016/j.carbpol.2019.115058
|
Härdelin, L., Hagström, B., 2015. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. J. Appl. Polym. Sci. 132, 41417. doi: 10.1002/app.41417
|
Hart, W.E.S., Harper, J.B., Aldous, L., 2015. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 17, 214-218. doi: 10.1039/C4GC01888E
|
Haslinger, S., Wang, Y.F., Rissanen, M., Lossa, M.B., Tanttu, M., Ilen, E., Määttänen, M., Harlin, A., Hummel, M., Sixta, H., 2019. Recycling of vat and reactive dyed textile waste to new colored man-made cellulose fibers. Green Chem. 21, 5598-5610. doi: 10.1039/C9GC02776A
|
Hauru, L.K.J., Hummel, M., Michud, A., Sixta, H., 2014. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21, 4471-4481. doi: 10.1007/s10570-014-0414-0
|
Hauru, L.K.J., Hummel, M., Nieminen, K., Michud, A., Sixta, H., 2016. Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12, 1487-1495. doi: 10.1039/C5SM02618K
|
Huber, T., Müssig, J., Curnow, O., Pang, S.S., Bickerton, S., Staiger, M.P., 2012. A critical review of all-cellulose composites. J. Mater. Sci. 47, 1171-1186. doi: 10.1007/s10853-011-5774-3
|
Jedvert, K., Idström, A., Köhnke, T., Alkhagen, M., 2020. Cellulosic nonwovens produced via efficient solution blowing technique. J. Appl. Polym. Sci. 137, 48339. doi: 10.1002/app.48339
|
Jia, R.N., Tian, W.G., Bai, H.T., Zhang, J.M., Wang, S., Zhang, J., 2019a. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795. doi: 10.1038/s41467-019-08675-3
|
Jia, R.N., Tian, W.G., Bai, H.T., Zhang, J.M., Wang, S., Zhang, J., 2019b. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthcare Mater. 8, 1801591. doi: 10.1002/adhm.201801591
|
Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2010a. Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride:an optional strategy for the degradation of lignin. ChemSusChem 3, 1078-1084. doi: 10.1002/cssc.201000112
|
Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2010b. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid. Holzforschung 64, 577-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/hf.2010.075
|
Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2011. Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind. Eng. Chem. Res. 50, 849-855. doi: 10.1021/ie101884h
|
Kalinoski, R.M., Shi, J., 2019. Hydrogels derived from lignocellulosic compounds:Evaluation of the compositional, structural, mechanical and antimicrobial properties. Ind. Crop. Prod. 128, 323-330. doi: 10.1016/j.indcrop.2018.11.002
|
Keskar, S.S., Edye, L.A., Doherty, W.O.S., Bartley, J.P., 2012. The chemistry of acid catalyzed delignification of sugarcane bagasse in the ionic liquid trihexyl tetradecyl phosphonium chloride. J. Wood Chem. Technol. 32, 71-81. doi: 10.1080/02773813.2011.573120
|
Khanmirzaei, M.H., Ramesh, S., Ramesh, K., 2015. Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep. 5, 18056. doi: 10.1038/srep18056
|
Kilpeläinen, I., Xie, H.B., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S., 2007. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55, 9142-9148. doi: 10.1021/jf071692e
|
King, A.W.T., Kilpelainen, I., Heikkinen, S., Jarvi, P., Argyropoulos, D.S., 2009. Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by31P NMR. Biomacromolecules 10, 458-463. doi: 10.1021/bm8010159
|
Kostag, M., Gericke, M., Heinze, T., El Seoud, O.A., 2019. Twenty-five years of cellulose chemistry:innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26, 139-184. doi: 10.1007/s10570-018-2198-0
|
Kuzmina, O., Bhardwaj, J., Vincent, S.R., Wanasekara, N.D., Kalossaka, L.M., Griffith, J., Potthast, A., Rahatekar, S., Eichhorn, S.J., Welton, T., 2017. Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. Green Chem. 19, 5949-5957. doi: 10.1039/C7GC02671D
|
Lei, L.F., Lindbråthen, A., Hillestad, M., Sandru, M., Favvas, E.P., He, X.Z., 2019. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation. Ind. Eng. Chem. Res. 58, 13330-13339. doi: 10.1021/acs.iecr.9b02480
|
Lei, L.F., Lindbråthen, A., Sandru, M., Gutierrez, M., Zhang, X.P., Hillestad, M., He, X.Z., 2018. Spinning cellulose hollow fibers using 1-ethyl-3-methylimidazolium acetate-dimethylsulfoxide Co-solvent. Polymers 10, 972. doi: 10.3390/polym10090972
|
Li, J.Y., Zhang, X.C., Zhang, J.M., Mi, Q.Y., Jia, F.W., Wu, J., Yu, J., Zhang, J., 2019. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties. Carbohydr. Polym. 223, 115057. doi: 10.1016/j.carbpol.2019.115057
|
Li, R.J., Gutierrez, J., Chung, Y.L., Frank, C.W., Billington, S.L., Sattely, E.S., 2018. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chem. 20, 1459-1466. doi: 10.1039/C7GC03026F
|
Liu, H.C., Li, C.J., Wang, B.J., Sui, X.F., Wang, L., Yan, X.L., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P., 2018. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose 25, 559-571. doi: 10.1007/s10570-017-1546-9
|
Liu, H.C., Rong, L.D., Wang, B.J., Mao, Z.P., Xie, R.Y., Xu, H., Zhang, L.P., Zhong, Y., Sui, X.F., 2017a. Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydr. Polym. 170, 117-123. doi: 10.1016/j.carbpol.2017.04.043
|
Liu, H.C., Rong, L.D., Wang, B.J., Xie, R.Y., Sui, X.F., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P, 2017b. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym. 176, 299-306. doi: 10.1016/j.carbpol.2017.08.085
|
Liu, H.C., Sui, X.F., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P., 2016. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol. Mater. Eng. 301, 725-732. doi: 10.1002/mame.201600042
|
Liu, Y.R., Wang, Y.L., Nie, Y., Wang, C.L., Ji, X.Y., Zhou, L., Pan, F.J., Zhang, S.J., 2019. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chem. Eng. 7, 20013-20021. doi: 10.1021/acssuschemeng.9b05489
|
Liu, Z., Wang, H.S., Liu, C., Jiang, Y.J., Yu, G., Mu, X.D., Wang, X.Y., 2012. Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem. Commun. 48, 7350. doi: 10.1039/c2cc17795a
|
Lorenzo, M., Zhu, B.Y., Srinivasan, G., 2016. Intrinsically flexible electronic materials for smart device applications. Green Chem. 18, 3513-3517. doi: 10.1039/C6GC00826G
|
Lu, Y., Sun, Q.F., Yang, D.J., She, X.L., Yao, X.D., Zhu, G.S., Liu, Y.X., Zhao, H.J., Li, J., 2012. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. J. Mater. Chem. 22, 13548. doi: 10.1039/c2jm31310c
|
Luo, N., Varaprasad, K., Reddy, G.V.S., Rajulu, A.V., Zhang, J., 2012. Preparation and characterization of cellulose/curcumin composite films. RSC Adv. 2, 8483. doi: 10.1039/c2ra21465b
|
Luo, Z.Q., Wang, A.Q., Wang, C.Z., Qin, W.C., Zhao, N.N., Song, H.Z., Gao, J.G., 2014. Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J. Mater. Chem. A 2, 7327. doi: 10.1039/c4ta00225c
|
Ma, B.M., Qin, A.W., Li, X., He, C.J., 2013. Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind. Eng. Chem. Res. 52, 9417-9421. doi: 10.1021/ie401097d
|
Ma, Y., Hummel, M., Kontro, I., Sixta, H., 2018a. High performance man-made cellulosic fibres from recycled newsprint. Green Chem. 20, 160-169. doi: 10.1039/C7GC02896B
|
Ma, Y., Hummel, M., Määttänen, M., Särkilahti, A., Harlin, A., Sixta, H., 2016. Upcycling of waste paper and cardboard to textiles. Green Chem. 18, 858-866. doi: 10.1039/C5GC01679G
|
Ma, Y.B., Asaadi, S., Johansson, L.S., Ahvenainen, P., Reza, M., Alekhina, M., Rautkari, L., Michud, A., Hauru, L., Hummel, M., Sixta, H., 2015. High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8, 4030-4039. doi: 10.1002/cssc.201501094
|
Ma, Y.B., Stubb, J., Kontro, I., Nieminen, K., Hummel, M., Sixta, H., 2018b. Filament spinning of unbleached birch kraft pulps:Effect of pulping intensity on the processability and the fiber properties. Carbohydr. Polym. 179, 145-151. doi: 10.1016/j.carbpol.2017.09.079
|
Mahmood, H., Moniruzzaman, M., Yusup, S., Akil, H.M., 2016a. Pretreatment of oil palm biomass with ionic liquids:a new approach for fabrication of green composite board. J. Clean. Prod. 126, 677-685. doi: 10.1016/j.jclepro.2016.02.138
|
Mahmood, H., Moniruzzaman, M., Yusup, S., Akil, H.M., 2016b. Particulate composites based on ionic liquid-treated oil palm fiber and thermoplastic starch adhesive. Clean Technol. Environ. Policy 18, 2217-2226. doi: 10.1007/s10098-016-1132-0
|
Mahmood, H., Moniruzzaman, M., Yusup, S., Muhammad, N., Iqbal, T., Akil, H.M., 2017. Ionic liquids pretreatment for fabrication of agro-residue/thermoplastic starch based composites:a comparative study with other pretreatment technologies. J. Clean. Prod. 161, 257-266. doi: 10.1016/j.jclepro.2017.05.110
|
Mahmoudian, S., Wahit, M.U., Ismail, A.F., Balakrishnan, H., Imran, M., 2015. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Mater. Sci. 50, 1228-1236. doi: 10.1007/s10853-014-8679-0
|
Man, Z., Muhammad, N., Sarwono, A., Bustam, M.A., Vignesh Kumar, M., Rafiq, S., 2011. Preparation of cellulose nanocrystals using an ionic liquid. J. Polym. Environ. 19, 726-731. doi: 10.1007/s10924-011-0323-3
|
Mashkour, M., Tajvidi, M., Kimura, F., Yousefi, H., Kimura, T., 2014. Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. ACS Appl. Mater. Interfaces 6, 8165-8172. doi: 10.1021/am500709t
|
Mehta, M.J., Kumar, A., 2019. Ionic liquid stabilized gelatin-lignin films:a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chem. Eur. J. 25, 1269-1274. doi: 10.1002/chem.201803763
|
Mi, Q.Y., Ma, S.R., Yu, J., He, J.S., Zhang, J., 2016. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustainable Chem. Eng. 4, 656-660. doi: 10.1021/acssuschemeng.5b01079
|
Michud, A., Hummel, M., Sixta, H., 2015. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75, 1-9. doi: 10.1016/j.polymer.2015.08.017
|
Mussana, H., Yang, X., Tessima, M., Han, F.Y., Iqbal, N., Liu, L.F., 2018. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind. Crop. Prod. 113, 225-233. doi: 10.1016/j.indcrop.2018.01.025
|
Nagatani, M., Tsurumaki, A., Takamatsu, K., Saito, H., Nakamura, N., Ohno, H, 2019. Preparation of epoxy resins derived from lignin solubilized in tetrabutylphosphonium hydroxide aqueous solutions. Int. J. Biol. Macromol. 132, 585-591. doi: 10.1016/j.ijbiomac.2019.03.152
|
Nawaz, H., Tian, W.G., Zhang, J.M., Jia, R.N., Chen, Z.Y., Zhang, J., 2018. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Appl. Mater. Interfaces 10, 2114-2121. doi: 10.1021/acsami.7b17342
|
Nawaz, H., Tian, W.G., Zhang, J.M., Jia, R.N., Yang, T.T., Yu, J., Zhang, J., 2019. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor. Anal. Chem. 91, 3085-3092. doi: 10.1021/acs.analchem.8b05554
|
Nawaz, H., Zhang, J.M., Tian, W.G., Jin, K.F., Jia, R.N., Yang, T.T., Zhang, J., 2020. Cellulose-based fluorescent sensor for visual and versatile detection of amines and anions. J. Hazard. Mater. 387, 121719. doi: 10.1016/j.jhazmat.2019.121719
|
Nguyen, N.A., Kim, K., Bowland, C.C., Keum, J.K., Kearney, L.T., André, N., Labbé, N., Naskar, A.K., 2019. A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chem. 21, 4354-4367. doi: 10.1039/C9GC00774A
|
Onwukamike, K.N., Tassaing, T., Grelier, S., Grau, E., Cramail, H., Meier, M.A.R., 2018. Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization. ACS Sustainable Chem. Eng. 6, 1496-1503. doi: 10.1021/acssuschemeng.7b04053
|
Pei, M., Peng, X.W., Shen, Y.Q., Yang, Y.L., Guo, Y.L., Zheng, Q., Xie, H.B., Sun, H., 2020. Synthesis of water-soluble, fully biobased cellulose levulinate esters through the reaction of cellulose and alpha-Angelica lactone in a DBU/CO2/DMSO solvent system. Green Chem. 22, 707-717. doi: 10.1039/C9GC03149A
|
Peng, S., Meng, H.C., Ouyang, Y., Chang, J., 2014a. Nanoporous magnetic cellulose-chitosan composite microspheres:preparation, characterization, and application for Cu(Ⅱ) adsorption. Ind. Eng. Chem. Res. 53, 2106-2113. doi: 10.1021/ie402855t
|
Peng, S., Meng, H.C., Zhou, L., Chang, J., 2014b. Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization. J. Nanosci. Nanotechnol. 14, 7010-7014. doi: 10.1166/jnn.2014.8933
|
Pinkert, A., Goeke, D.F., Marsh, K.N., Pang, S.S., 2011. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids. Green Chem. 13, 3124. doi: 10.1039/c1gc15671c
|
Plappert, S.F., Nedelec, J.M., Rennhofer, H., Lichtenegger, H.C., Bernstorff, S., Liebner, F.W., 2018. Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion:an approach toward anisotropic gels and aerogels. Biomacromolecules 19, 4411-4422. doi: 10.1021/acs.biomac.8b01278
|
Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., Labidi, J., 2016a. Lignin oxidation and depolymerisation in ionic liquids. Green Chem. 18, 834-841. doi: 10.1039/C5GC01950H
|
Prado, R., Erdocia, X., de Gregorio, G.F., Labidi, J., Welton, T., 2016b. Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chem. Eng. 4, 5277-5288. doi: 10.1021/acssuschemeng.6b00642
|
Pu, Y.Q., Jiang, N., Ragauskas, A.J., 2007. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 27, 23-33. doi: 10.1080/02773810701282330
|
Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324. doi: 10.1039/C4GC01333F
|
Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., 2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344, 1246843. doi: 10.1126/science.1246843
|
Rashid, T., Kait, C.F., Regupathi, I., Murugesan, T., 2016. Dissolution of kraft lignin using Protic Ionic Liquids and characterization. Ind. Crop. Prod. 84, 284-293. doi: 10.1016/j.indcrop.2016.02.017
|
Roata, I.C., Croitoru, C., Pascu, A., Stanciu, M.E., 2018. Characterization of physically crosslinked ionic liquid-lignocellulose hydrogels. Bio-Resources, 13, 6110-6121. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_3_6110_Roata_Physically_Crosslinked_Ionic_Hydrogels/6215
|
Salanti, A., Zoia, L., Orlandi, M., 2016. Chemical modifications of lignin for the preparation of macromers containing cyclic carbonates. Green Chem. 18, 4063-4072. doi: 10.1039/C6GC01028H
|
Sanderson, K., 2011. Lignocellulose:a chewy problem. Nature 474, S12-S14. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200609050
|
Scott, J.L., Unali, G., Perosa, A., 2011. A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids. Chem. Commun. 47, 2970. doi: 10.1039/c0cc05057a
|
Sen, S., Martin, J.D., Argyropoulos, D.S., 2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chem. Eng. 1, 858-870. doi: 10.1021/sc400085a
|
Shen, X.P., Berton, P., Shamshina, J.L., Rogers, R.D., 2016. Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chem. 18, 5607-5620. doi: 10.1039/C6GC01339B
|
Shen, X.P., Xie, Y.J., Wang, Q.W., Yi, X., Shamshina, J.L., Rogers, R.D., 2019. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose 26, 4005-4019. doi: 10.1007/s10570-019-02328-w
|
Singh, N., Rahatekar, S.S., Koziol, K.K.K., Ng, T.S., Patil, A.J., Mann, S., Hollander, A.P., Kafienah, W., 2013. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 14, 1287-1298. doi: 10.1021/bm301762p
|
Song, J., Lu, F., Cheng, B.W., Hu, X.Y., Ma, C., 2014. Melt blowing of ionic liquid-based cellulose solutions. Fibers Polym. 15, 291-296. doi: 10.1007/s12221-014-0291-z
|
Sun, N., Li, W.Y., Stoner, B., Jiang, X.Y., Lu, X.M., Rogers, R.D., 2011. Composite fibers spun directly from solutions of raw lignocellulosic biomass Dissolved in ionic liquids. Green Chem. 13, 1158. doi: 10.1039/c1gc15033b
|
Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D., 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11, 646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa89847d229922bf7c39057b3a5450e9
|
Sun, Y.C., Liu, X.N., Wang, T.T., Xue, B.L., Sun, R.C., 2019. Green process for extraction of lignin by the microwave-assisted ionic liquid approach:toward biomass biorefinery and lignin characterization. ACS Sustainable Chem. Eng. 7, 13062-13072. doi: 10.1021/acssuschemeng.9b02166
|
Sundberg, J., Toriz, G., Gatenholm, P., 2015. Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose 22, 1943-1953. doi: 10.1007/s10570-015-0606-2
|
Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S., Patti, A.F., Pringle, J.M., Scott, J.L., 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11, 339. doi: 10.1039/b815310h
|
Thiemann, S., Sachnov, S.J., Pettersson, F., Bollström, R., Österbacka, R., Wasserscheid, P., Zaumseil, J., 2014. Cellulose-based ionogels for paper electronics. Adv. Funct. Mater. 24, 625-634. doi: 10.1002/adfm.201302026
|
Tian, W.G., Zhang, J.M., Yu, J., Wu, J., Nawaz, H., Zhang, J., He, J.S., Wang, F.S., 2016. Cellulose-based solid fluorescent materials. Adv. Opt. Mater. 4, 2044-2050. doi: 10.1002/adom.201600500
|
Tian, W.G., Zhang, J.M., Yu, J., Wu, J., Zhang, J., He, J.S., Wang, F.S., 2018. Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv. Funct. Mater. 28, 1703548. doi: 10.1002/adfm.201703548
|
Tran, C.D., Prosenc, F., Franko, M., Benzi, G., 2016. One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin:characterization and antimicrobial activity. ACS Appl. Mater. Interfaces 8, 34791-34801. doi: 10.1021/acsami.6b14347
|
Tsioptsias, C., Stefopoulos, A., Kokkinomalis, I., Papadopoulou, L., Panayiotou, C, 2008. Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chemistry 10, 965-971. doi: 10.1039/b803869d
|
Utomo, N.W., Saifuddin, I., Nazari, B., Jain, P., Colby, R.H., 2020. Chain dynamics and glass transition of dry native cellulose solutions in ionic liquids. Soft Matter 16, 200-207. doi: 10.1039/C9SM01587F
|
Villar-Chavero, M.M., Domínguez, J.C., Alonso, M.V., Oliet, M., Rodriguez, F., 2019. Tuning the rheological properties of cellulosic ionogels reinforced with chitosan:The role of the deacetylation degree. Carbohydr. Polym. 207, 775-781. doi: 10.1016/j.carbpol.2018.12.041
|
Vincent, S., Prado, R., Kuzmina, O., Potter, K., Bhardwaj, J., Wanasekara, N.D., Harniman, R.L., Koutsomitopoulou, A., Eichhorn, S.J., Welton, T., Rahatekar, S.S., 2018. Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustainable Chem. Eng. 6, 5903-5910. doi: 10.1021/acssuschemeng.7b03200
|
Vo, H.T., Kim, Y.J., Jeon, E.H., Kim, C.S., Kim, H.S., Lee, H., 2012. Ionic-liquid-derived, water-soluble ionic cellulose. Chem. Eur. J. 18, 9019-9023. doi: 10.1002/chem.201200982
|
Wan, J.Q., Zhang, J.M., Yu, J., Zhang, J., 2017. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer Lithium-Ion batteries. ACS Appl. Mater. Interfaces 9, 24591-24599. doi: 10.1021/acsami.7b06271
|
Wanasekara, N.D., Michud, A., Zhu, C.C., Rahatekar, S., Sixta, H., Eichhorn, S.J., 2016. Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99, 222-230. doi: 10.1016/j.polymer.2016.07.007
|
Wang, J., Boy, R., Nguyen, N.A., Keum, J.K., Cullen, D.A., Chen, J.H., Soliman, M., Littrell, K.C., Harper, D., Tetard, L., Rials, T.G., Naskar, A.K., Labbé, N., 2017. Controlled assembly of lignocellulosic biomass components and properties of reformed materials. ACS Sustainable Chem. Eng. 5, 8044-8052. doi: 10.1021/acssuschemeng.7b01639
|
Wang, S., Shuai, L., Saha, B., Vlachos, D.G., Epps, T.H.Ⅲ, 2018. From tree to tape:direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 4, 701-708. doi: 10.1021/acscentsci.8b00140
|
Wang, Z.H., Tammela, P., Strømme, M., Nyholm, L., 2017. Cellulose-based supercapacitors:material and performance considerations. Adv. Energy Mater. 7, 1700130. doi: 10.1002/aenm.201700130
|
Wu, J., Bai, J., Xue, Z.G., Liao, Y.G., Zhou, X.P., Xie, X.L., 2015. Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose 22, 89-99. doi: 10.1007/s10570-014-0502-1
|
Xiao, P., Zhang, J.M., Feng, Y., Wu, J., He, J.S., Zhang, J., 2014. Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus:cellulose diphenyl phosphate and its mixed esters. Cellulose 21, 2369-2378. doi: 10.1007/s10570-014-0256-9
|
Xu, A.R., Guo, X., Zhang, Y.B., Li, Z.Y., Wang, J.J., 2017. Efficient and sustainable solvents for lignin dissolution:aqueous choline carboxylate solutions. Green Chem. 19, 4067-4073. doi: 10.1039/C7GC01886J
|
Yang, Y.L., Song, L.C., Peng, C., Liu, E.H., Xie, H.B., 2015. Activating cellulose via its reversible reaction with CO2 in the presence of 1, 8-diazabicyclo[5.4.0]undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem. 17, 2758-2763. https://pubs.rsc.org/en/content/articlelanding/2015/gc/c5gc00115c#!
|
Yang, Y.L., Xie, H.B., Liu, E.H., 2014. Acylation of cellulose in reversible ionic liquids. Green Chem. 16, 3018-3023. doi: 10.1039/C4GC00199K
|
Yin, C.C., Chen, W.W., Zhang, J.M., Zhang, M., Zhang, J., 2019b. A facile and efficient method to fabricate high-resolution immobilized cellulose-based chiral stationary phases via thiol-ene click chemistry. Sep. Purif. Technol. 210, 175-181. doi: 10.1016/j.seppur.2018.08.002
|
Yin, C.C., Zhang, J.M., Chang, L.M., Zhang, M., Yang, T.T., Zhang, X.C., Zhang, J, 2019a. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases. Anal. Chimica Acta 1073, 90-98. doi: 10.1016/j.aca.2019.04.071
|
Yuan, B., Zhang, J.M., Mi, Q.Y., Yu, J., Song, R., Zhang, J., 2017. Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ Sol-gel process. ACS Sustainable Chem. Eng. 5, 11117-11123. doi: 10.1021/acssuschemeng.7b03211
|
Yuan, B., Zhang, J.M., Yu, J., Song, R., Mi, Q.Y., He, J.S., Zhang, J., 2016. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci. China Chem. 59, 1335-1341. doi: 10.1007/s11426-016-0188-0
|
Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552-3599. doi: 10.1021/cr900354u
|
Zhang, J.M., Chen, W.W., Feng, Y., Wu, J., Yu, J., He, J.S., Zhang, J., 2015. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 64, 963-970. doi: 10.1002/pi.4883
|
Zhang, J.M., Luo, N., Wan, J.Q., Xia, G.M., Yu, J., He, J.S., Zhang, J., 2017b. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chem. Eng. 5, 5127-5133. doi: 10.1021/acssuschemeng.7b00488
|
Zhang, J.M., Luo, N., Zhang, X.Y., Xu, L.L., Wu, J., Yu, J., He, J.S., Zhang, J., 2016. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustainable Chem. Eng. 4, 4417-4423. doi: 10.1021/acssuschemeng.6b01034
|
Zhang, J.M., Wu, J., Yu, J., Zhang, X.Y., He, J.S., Zhang, J., 2017a. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials:state of the art and future trends. Mater. Chem. Front. 1, 1273-1290. doi: 10.1039/C6QM00348F
|
Zhang, J.P., Kitayama, H., Gotoh, Y., Potthast, A., Rosenau, T., 2019a. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 226, 115258. doi: 10.1016/j.carbpol.2019.115258
|
Zhang, J.P., Yamagishi, N., Gotoh, Y., Potthast, A., Rosenau, T., 2020. High performance cellulose fibers regenerated from 1-butyl-3- methylimidazolium chloride solution:Effects of viscosity and molecular weight. J. Appl. Polym. Sci. 137, 48681. doi: 10.1002/app.48681
|
Zhang, J.P., Yamagishi, N., Tominaga, K., Gotoh, Y., 2017c. High-strength regenerated cellulose fibers spun from 1-butyl-3-methylimidazolium chloride solutions. J. Appl. Polym. Sci. 134, 45551. doi: 10.1002/app.45551
|
Zhang, L., Zhao, D.W., Feng, M., He, B., Chen, X.Y., Wei, L.G., Zhai, S.R., An, Q.D., Sun, J., 2019b. Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustainable Chem. Eng. 7, 18593-18602. doi: 10.1021/acssuschemeng.9b04907
|
Zhang, X., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019c. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912. doi: 10.1002/adfm.201806912
|
Zhang, Z.R., Song, J.L., Han, B.X., 2017d. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117, 6834-6880. doi: 10.1021/acs.chemrev.6b00457
|
Zhao, D.W., Chen, C.J., Zhang, Q., Chen, W.S., Liu, S.X., Wang, Q.W., Liu, Y.X., Li, J., Yu, H.P., 2017. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7, 1700739. doi: 10.1002/aenm.201700739
|
Zhao, D.W., Zhu, Y., Cheng, W.K., Xu, G.W., Wang, Q.W., Liu, S.X., Li, J., Chen, C.J., Yu, H.P., Hu, L.B., 2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390-403. doi: 10.1016/j.matt.2019.10.020
|
Zhao, L., Shi, S., Liu, M., Zhu, G.Z., Wang, M., Du, W.Q., Gao, J., Xu, J., 2018. Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chem. 20, 1270-1279. doi: 10.1039/C8GC00268A
|
Zheng, Y.Y., Miao, J.J., Maeda, N., Frey, D., Linhardt, R.J., Simmons, T.J., 2014. Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J. Mater. Chem. A 2, 15029-15034. doi: 10.1039/C4TA03221G
|
Zhou, L., Wang, Q., Wen, J.C., Chen, X., Shao, Z.Z., 2013. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54, 5035-5042. doi: 10.1016/j.polymer.2013.07.002
|
Zhu, C.C., Koutsomitopoulou, A.F., Eichhorn, S.J., van Duijneveldt, J.S., Richardson, R.M., Nigmatullin, R., Potter, K.D., 2018a. High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as Co-solvent with ionic liquid. Macromol. Mater. Eng. 303, 1800029. doi: 10.1002/mame.201800029
|
Zhu, C.C., Richardson, R.M., Potter, K.D., Koutsomitopoulou, A.F., van Duijneveldt, J.S., Vincent, S.R., Wanasekara, N.D., Eichhorn, S.J., Rahatekar, S.S., 2016. High Modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustainable Chem. Eng. 4, 4545-4553. doi: 10.1021/acssuschemeng.6b00555
|
Zhu, H.L., Fang, Z.Q., Wang, Z., Dai, J.Q., Yao, Y.G., Shen, F., Preston, C., Wu, W.X., Peng, Jang, N., Yu, Q.K., Yu, Z.F., Hu, L.B., 2016. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369-1377. doi: 10.1021/acsnano.5b06781
|
Zhu, X.Y., Peng, C., Chen, H.X., Chen, Q., Zhao, Z.K., Zheng, Q., Xie, H.B., 2018b. Opportunities of ionic liquids for lignin utilization from biorefinery. ChemistrySelect 3, 7945-7962. doi: 10.1002/slct.201801393
|
Zhu, Y.T., Li, Z.J., Chen, J.Z., 2019. Applications of lignin-derived catalysts for green synthesis. Green Energy Environ. 4, 210-244. doi: 10.1016/j.gee.2019.01.003
|