Volume 5 Issue 2
May  2020
Turn off MathJax
Article Contents
Haiyang Ding, Xiaohua Yang, Lina Xu, Mei Li, Shouhai Li, Sujing Zhang, Jianling Xia. Analysis and Comparison of Tribological Performance of Fatty Acid-based Lubricant Additives with Phosphorus and Sulfur[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 134-142. doi: 10.1016/j.jobab.2020.04.007
Citation: Haiyang Ding, Xiaohua Yang, Lina Xu, Mei Li, Shouhai Li, Sujing Zhang, Jianling Xia. Analysis and Comparison of Tribological Performance of Fatty Acid-based Lubricant Additives with Phosphorus and Sulfur[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 134-142. doi: 10.1016/j.jobab.2020.04.007

Analysis and Comparison of Tribological Performance of Fatty Acid-based Lubricant Additives with Phosphorus and Sulfur

doi: 10.1016/j.jobab.2020.04.007
More Information
  • Corresponding author: Jianling Xia, E-mail addresses:xiajianling@126.com
  • Received Date: 2019-11-12
  • Accepted Date: 2020-01-15
  • Publish Date: 2020-05-01
  • Two environmentally friendly, water-based lubricant additives (phosphorus-containing ricinoleic acid (PRA) and sulfur-containing ricinoleic acid (SRA)) were prepared. The lubrication performance of the additives in a water-based lubricant was tested using a four-ball tribotester. The stainless steel surface was analyzed by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The additives reduced the coefficient of friction (COF) value, wear scar diameter (WSD) and improved the extreme pressure (PB) value. Water-based fluids containing the PRA exhibited lower COF, WSD, and PB values than the SRA. The good tribological performances of the PRA and SRA were attributed to the synergistic action of long aliphatic chains and highly active phosphorus and sulfur elements.

     

  • loading
  • Bai, P.P., Li, S.W., Tao, D.S., Jia, W.P., Meng, Y.G., Tian, Y., 2018. Tribological properties of liquid-metal galinstan as novel additive in Lithium grease. Tribol. Int. 128, 181-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12df7a1193e58e74bf83cf94dfdb6eeb
    Bhaumik, S., Maggirwar, R., Datta, S., Pathak, S.D, 2018. Analyses of anti-wear and extreme pressure properties of Castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 449, 277-286. doi: 10.1016/j.apsusc.2017.12.131
    Cheng, M.H., Dien, B.S., Singh, V., 2019. Economics of plant oil recovery:a review. Biocatal. Agric. Biotechnol. 18, 101056. doi: 10.1016/j.bcab.2019.101056
    Deivajothi, P., Manieniyan, V., Sivaprakasam, S., 2019. Experimental investigation on DI diesel engine with fatty acid oil from by-product of vegetable oil refinery. Ain Shams Eng. J. 10, 77-82. doi: 10.1016/j.asej.2018.04.005
    Ding, M., Lin, B., Sui, T.Y., Wang, A.Y., Yan, S., Yang, Q., 2018. The excellent anti-wear and friction reduction properties of silica nanoparticles as ceramic water lubrication additives. Ceram. Int. 44, 14901-14906.
    Evans, R.D., Nixon, H.P., Darragh, C.V., Howe, J.Y., Coffey, D.W., 2007. Effects of extreme pressure additive chemistry on rolling element bearing surface durability. Tribol. Int. 40, 1649-1654. doi: 10.1016/j.triboint.2007.01.012
    Gao, C.P., Guo, G.F., Zhang, G., Wang, Q.H., Wang, T.M., Wang, H.G, 2017. Formation mechanisms and functionality of boundary films derived from water lubricated polyoxymethylene/hexagonal boron nitride nanocomposites. Mater. Des. 115, 276-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b0a12594a8a5b74489cd6f4206ea47f
    He, C., Yan, H.H., Wang, X.H., Bai, M.L., 2018. Graphene quantum dots prepared by gaseous detonation toward excellent friction-reducing and antiwear additives. Diam. Relat. Mater. 89, 293-300. doi: 10.1016/j.diamond.2018.09.019
    He, Z.Y., Lu, J.L., Zeng, X.Q., Shao, H.Y., Ren, T.H., Liu, W.M., 2004. Study of the tribological behaviors of S, P-containing triazine derivatives as additives in rapeseed oil. Wear 257, 389-394. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=624b5435ee0706008220660df4c9a750
    Kerni, L., Raina, A., Haq, M.I.U, 2019. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 426, 819-827. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e34dc76a6272de3361885b196d4bd870
    Kinoshita, H., Nishina, Y., Alias, A.A., Fujii, M, 2014. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720-723. doi: 10.1016/j.carbon.2013.08.045
    Lei, H., Guan, W.C., Luo, J.B., 2002. Tribological behavior of fullerene-styrene sulfonic acid copolymer as water-based lubricant additive. Wear 252, 345-350.
    Shahnazar, S., Bagheri, S., Abd Hamid, S.B., 2016. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrog. Energy 41, 3153-3170. doi: 10.1016/j.ijhydene.2015.12.040
    Wan, Y., Xue, Q.J., 1995. Friction and wear characteristics of p-containing antiwear and extreme pressure additives in the sliding of steel against aluminum alloy. Wear 188, 27-32. doi: 10.1016/0043-1648(94)06589-6
    Wang, Y.R., Yu, Q.L., Cai, M.R., Zhou, F., Liu, W.M., 2018. Halide-free PN ionic liquids surfactants as additives for enhancing tribological performance of water-based liquid. Tribol. Int. 128, 190-196. doi: 10.1016/j.triboint.2018.07.018
    Wang, Y.X., Du, Y.Y., Deng, J.N., Wang, Z.P., 2019. Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets. Colloids Surfaces A: Physicochem. Eng. Aspects 562, 321-328.
    Wu, H., Jia, F.H., Zhao, J.W., Huang, S.Q., Wang, L.Z., Jiao, S.H., Huang, H., Jiang, Z.Y., 2019a. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear 426/427, 792-804. doi: 10.1016/j.wear.2018.11.023
    Wu, P., Chen, X.C., Zhang, C.H., Luo, J.B, 2019b. Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water. Tribol. Int. 132, 177-184. doi: 10.1016/j.triboint.2018.12.021
    Wu, Y.L., Zeng, X.Q., Ren, T.H., de Vries, E., van der Heide, E, 2017. The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion. Tribol. Int. 105, 304-316. doi: 10.1016/j.triboint.2016.10.024
    Wu, Z.M., Guo, Z.W., Yuan, C.Q., 2019c. Influence of polyethylene wax on wear resistance for polyurethane composite material under low speed water-lubricated conditions. Wear 426/427, 1008-1017. https://www.sciencedirect.com/science/article/pii/S0043164818315205
    Xia, W.Z., Zhao, J.W., Wu, H., Jiao, S.H., Zhao, X.M., Zhang, X.M., Xu, J.Z., Jiang, Z.Y, 2018. Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles. Wear 396, 162-171. https://ro.uow.edu.au/eispapers1/1168/
    Yang, Y., Zhang, C.H., Wang, Y., Dai, Y.J., Luo, J.B., 2016. Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribol. Int. 95, 27-34. doi: 10.1016/j.triboint.2015.10.031
    Yu, Q.L., Zhang, C.Y., Dong, R., Shi, Y.J., Wang, Y.R., Bai, Y.Y., Zhang, J.Y., Cai, M.R., Zhou, F., 2019. Novel N, P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance. Tribol. Int. 132, 118-129. doi: 10.1016/j.triboint.2018.12.002
    Zhang, S.M., Zhang, C.H., Chen, X.C., Li, K., Jiang, J.M., Yuan, C.Q., Luo, J.B., 2019. XPS and ToF-SIMS analysis of the tribochemical absorbed films on steel surfaces lubricated with diketone. Tribol. Int. 130, 184-190. doi: 10.1016/j.triboint.2018.09.018
    Zheng, G.L., Ding, T.M., Huang, Y.X., Zheng, L., Ren, T.H., 2018. Fatty acid based phosphite ionic liquids as multifunctional lubricant additives in mineral oil and refined vegetable oil. Tribol. Int. 123, 316-324. doi: 10.1016/j.triboint.2018.03.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (997) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return