Volume 5 Issue 3
Aug.  2020
Turn off MathJax
Article Contents
Mohammad Nashir Uddin, Taslima Ferdous, Zahidul Islam, M. SarwarJahan, M.A. Quaiyyum. Development of chemometric model for characterization of non-wood by FT-NIR data[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 196-203. doi: 10.1016/j.jobab.2020.07.005
Citation: Mohammad Nashir Uddin, Taslima Ferdous, Zahidul Islam, M. SarwarJahan, M.A. Quaiyyum. Development of chemometric model for characterization of non-wood by FT-NIR data[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 196-203. doi: 10.1016/j.jobab.2020.07.005

Development of chemometric model for characterization of non-wood by FT-NIR data

doi: 10.1016/j.jobab.2020.07.005
More Information
  • Corresponding author: Mohammad Nashir Uddin, E-mail address: m2nashir@yahoo.com
  • Received Date: 2020-02-13
  • Accepted Date: 2020-03-29
  • Publish Date: 2020-08-01
  • In this study, a model for prediction of lignocellulose components of agricultural residues has been developed with Fourier Transformed Near Infrared (FT-NIR) spectroscopy data. Two calibration techniques (Principal Component Regression (PCR) and Partial Least Square Regression (PLSR)) were assessed for prediction of lignin, holocellulose, α-cellulose, pentosan and ash, and found the PLSR better for lignin, holocellulose and α-cellulose. The PCR also produced better results for quantification of pentosan and ash. Spectral range (7000-5000cm-1) showed more informative than other parts of the spectral data. The PLSR showed maximum value of R2 (R2=0.91%) for prediction of holocellulose. For the prediction of pentosan, the PCR was better (R2=0.68%). The PCR also showed better results (R2=86%) for quantification of ash. To determine amount of lignin, the PLSR was the best (R2=0.83%) when the spectral data were de-trained and smoothed with Savitzky-Golay (S-G) filtering simultaneously. For prediction of α-cellulose, the PLSR was the best model (R2=0.94%) when the data were pretreated with mean normalization. Considering the best alternatives inNear Infrared (NIR) data preprocessing and calibration techniques, methods for quantification of lignocellulose components of agricultural residues have been developed which is rapid, cost effective, and less chemical intensive and easily usable in pulp and paper industries and pulp testing laboratories.

     

  • loading
  • Akhtaruzzamen, A.F.M., Shafi, M., 1993. Pulping of jute. Tappi J. 78, 106.
    Alves, A., Santos, A., da Silva Perez, D., Rodrigues, J., Pereira, H., Simões, R., Schwanninger, M., 2007. NIR PLSR model selection for Kappa number prediction of maritime pine Kraft pulps. Wood Sci. Technol. 41, 491-499. doi: 10.1007/s00226-007-0130-0
    Colares, C.J., Pastore, T., Coradin, V.T., 2015. Exploratory analysis of the distribution of lignin and cellulose in woods by Raman imaging and chemometrics. J. Braz. Chem. Soc. 26, 1297-1305. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000601297
    Fahey, L.M., Nieuwoudt, M.K., Harris, P.J., 2019. Predicting the cell-wall compositions of solid Pinusradiata (radiata pine) wood using NIR and ATR FTIR spectroscopies. Cellulose 26, 7695-7716. doi: 10.1007/s10570-019-02659-8
    Ferdous, T., Quaiyyum, M.A., Bashar, S., Jahan, M.S., 2020. Anatomical, morphological and chemical characteristics of kaun straw (Seetaria-ltalika). Nord. Pulp Pap. Res. J. DOI: 10.1515/npprj-2019-0057.
    Fiserova, M., Gigac, J., Russ, A., Maholanyiova, M., 2012. Using NIR analysis for determination of hardwood kraft pulp properties. Wood Research, 57, 121-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60ee8f4e88f59f4e4390dc0f5f983791
    Hattori, T., Murakami, S., Mai, M.K., Yamada, T., Hirochika, H., Ike, M., Tokuyasu, K., Suzuki, S., Sakamoto, M., Umezawa, T., 2012. Rapid analysis of transgenic rice straw using near-infrared spectroscopy. Plant Biotechnol. 29, 359-366. doi: 10.5511/plantbiotechnology.12.0501a
    He, L., Xin, L.P., Chai, X.S., Li, J., 2015. A novel method for rapid determination of alpha-cellulose content in dissolving pulps by visible spectroscopy. Cellulose 22, 2149-2156. doi: 10.1007/s10570-015-0652-9
    Huang, C., Han, L., Liu, X., Ma, L., 2010. The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energy Sources Part A:Recover. Util. Environ. Eff. 33, 114-120. doi: 10.1080/15567030902937127
    Hussain, M.A., Huq, M.E., Rahman, S.M., Ahmed, Z., 2002. Estimation of lignin in jute by titration method. Pak. J. Biol. Sci. 5, 521-522. doi: 10.3923/pjbs.2002.521.522
    Jahan, M.S., 2009. Studies on the effect of prehydrolysis and amine in cooking liquor on producing dissolving pulp from jute (Corchoruscapsularis). Wood Sci. Technol. 43, 213-224. doi: 10.1007/s00226-008-0213-6
    Jahan, M.S., Chowdhury, D.A.N., Islam, M.K., 2005. Alkalinesulphite anthraquinone methanol (ASAM) pulpig of jute. IPPTA J. 17, 37-43.
    Jahan, M.S., Uddin, M.N., Akhtaruzzaman, A.F.M., 2016. An approach for the use of agricultural by-products through a biorefinery in Bangladesh. For. Chron. 92, 447-452. doi: 10.5558/tfc2016-080
    Kothiyal, V., Jaideep, Bhandari, S., Ginwal, H.S., Gupta, S., 2015. Multi-species NIR calibration for estimating holocellulose in plantation timber. Wood Sci. Technol. 49, 769-793. doi: 10.1007/s00226-015-0720-1
    Li, X.L., Sun, C.J., Zhou, B.X., He, Y., 2015. Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Sci. Rep. 5, 17210. doi: 10.1038/srep17210
    Nuruddin, M., Chowdhury, A., Haque, S., Quaiyyum, M.A., 2011.Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellulose Chemistry and Technology. 45, 347-354. http://www.researchgate.net/publication/224001790_Extraction_and_Characterization_of_Cellulose_Microfibrils_from_Agricultural_wastes_in_an_Integrated_Biorefinery_Initiative
    Poke, F.S., Raymond, C.A., 2006. Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptusglobulus. J. Wood Chem. Technol. 26, 187-199. doi: 10.1080/02773810600732708
    Rajesh, K., Ray, A.K., 2006. Artificial neural network for solving paper industry problems:a review. Journal of Scientific & Industrial Research. 65, 565-573. http://www.researchgate.net/publication/287438063_Artificial_neural_network_for_solving_paper_industry_problems_A_review
    Roy, T.K., Mohindru, V.K., Behera, N.C., 1998. Jute for specialty pulp. IPPTA J. 10, 81-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026056905
    Saijonkari-Pahkala, K., 2001. Non-wood plants as raw materials for pulp and paper. Agricultural and Food Science in Finland. 10, 1-97. http://www.researchgate.net/publication/34974740_Non-wood_plants_as_raw_material_for_pulp_and_paper_?ev=auth_pub
    Santos, A.J.A., Anjos, O., Pereira, H., 2016. Prediction of blackwood Kraft pulps yields with wood NIR-PLSR models. Wood Sci. Technol. 50, 1307-1322. doi: 10.1007/s00226-016-0837-x
    Silva, J.C., Nielsen, B.H., Rodrigues, J., Pereira, H., Wellendorf, H., 1999. Rapid determination of the lignin content in sitka spruce (Piceasitchensis (bong.) carr.) wood by Fourier transform infrared spectrometry. Holzforschung 53, 597-602. doi: 10.1515/HF.1999.099
    Uddin, M.N., Ahmed, S., Ray, S., Islam, M.S., Quadery, A.H., 2019. Method for predicting lignocellulose components in jute by transformed FT-NIR spectroscopic data and chemometrics. Nordic Pulp & Paper Research Journal 34, 1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DGYTnpprj-2018-0018
    Uddin, M.N., Ray, S.K., Islam, M.S., Nayeem, J., Jahan, M.S., 2017. Development of method for rapid prediction of chemical components of dhaincha using FT-NIR spectroscopy and chemometrics. J. Sci. Technol. For. Prod Process. 6, 22-28. http://www.researchgate.net/publication/321307520_DEVELOPMENT_OF_METHOD_FOR_RAPID_PREDICTION_OF_CHEMICAL_COMPONENTS_OF_DHAINCHA_USING_FT-NIR_SPECTROSCOPY_AND_CHEMOMETRICS
    Yeh, T.F., Yamada, T., Capanema, E., Chang, H.M., Chiang, V., Kadla, J.F., 2005. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. J. Agric. Food Chem. 53, 3328-3332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d5f3fbcb36a20aa17c6b1449ddee72b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (663) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return