Citation: | S.E .Ibitoye, I.K. Adegun, P.O. Omoniyi, T.S. Ogedengbe, O.O. Alabi. Numerical investigation of thermo-physical properties of non-newtonian fliud in a modelled intestine[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 211-221. doi: 10.1016/j.jobab.2020.07.007 |
Abrar, M.N., Sagheer, M., Hussian, S., 2020. Thermodynamics analysis of Joule heating and internal heat source over an inclined ciliated tube. Phys. A:Stat. Mech. Appl. 549, 123983. doi: 10.1016/j.physa.2019.123983
|
Adegun, I.K., 2020. The one hundred and ninety-third (193rd) inaugural lecture:god the creator, man the manipulator:the journey so far in engineering manipulation of fluids and geometries for human life. Ilorin, Kwara State, Nigeria:University of Ilorin Press.
|
Alokaily, S., 2017. Modeling and simulation of the peristaltic flow of Newtonian and non-Newtonian fluids with application to the human body. Michigan: Department of Mathematical Sciences, Michigan Technological University.
|
Alokaily, S., Feigl, K., Tanner, F.X., 2019. Characterization of peristaltic flow during the mixing process in a model human stomach. Phys. Fluids 31, 103105. doi: 10.1063/1.5122665
|
Berk, Z., 2013. A volume in food science and technology. Israel:Israel Institute of Technology.
|
Cengel, Y.A., Ghajar, A.J., 2015. Heat and Mass Transfer:Fundamentals and Applications. (8th ed.). New York:Mc Graw-Hill Education.
|
Chen, Y., Zhou, W.D., Roh, T., Estes, M.K., Kaplan, D.L., 2017. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS One 12, e0187880. doi: 10.1371/journal.pone.0187880
|
Cortez, A.R., Poling, H.M., Brown, N.E., Singh, A., Mahe, M.M., Helmrath, M.A., 2018. Transplantation of human intestinal organoids into the mouse mesentery:a more physiologic and anatomic engraftment site. Surgery 164, 643-650. doi: 10.1016/j.surg.2018.04.048
|
Dejam, M., 2018. Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 189, 296-310. doi: 10.1016/j.ces.2018.05.058
|
Ehsan, T., Anjum, H.J., Asghar, S., 2020. Peristaltic flows:a quantitative measure for the size of a bolus. Phys. A:Stat. Mech. Appl. 553, 124211. doi: 10.1016/j.physa.2020.124211
|
Ellahi, R., Mubashir Bhatti, M., Vafai, K., 2014. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int. J. Heat Mass Transf. 71, 706-719. doi: 10.1016/j.ijheatmasstransfer.2013.12.038
|
Farooq, S., Khan, M.I., Hayat, T., Waqas, M., Alsaedi, A., 2019. Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J. Mol. Liq. 285, 314-322. doi: 10.1016/j.molliq.2019.04.051
|
Fonseca, M.R.J., 2011. An engineering understanding of the small intestine. UK:the University of Birmingham.
|
Hari, B., Bakalis, S., Fryer, P., 2012. Computational modeling and simulation of the human duodenum. Birmingham:University of Birmingham, 1-6.
|
Hayat, T., Ahmed, B., Abbasi, F.M., Alsaedi, A., 2017. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity:a comparative study. J. Mol. Liq. 234, 324-329. doi: 10.1016/j.molliq.2017.03.080
|
Ismail, A.A., 2017. Peristaltic flow of some selected food supplements in a modelled oesophagus. Mechanical, Nigeria:University of Ilorin.
|
Marciani, L., Gowland, P.A., Spiller, R.C., Manoj, P., Moore, R.J., Young, P., Fillery-Travis, A.J., 2001. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am. J. Physiol. -Gastrointest. Liver Physiol. 280, G1227-G1233. doi: 10.1152/ajpgi.2001.280.6.G1227
|
Mernone, A.V., 2000. A mathematical study of peristaltic transport of physiological fluids. Adelaide: Adelaide of University, Department of Applied Mathematics.
|
Nadeem, S., Ashiq, S., Ali, M., 2012. Williamson fluid model for the peristaltic flow of chyme in small intestine. Math. Probl. Eng. 2012, 1-18. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=87029359&site=ehost-live
|
Schulte, L., Hohwieler, M., Müller, M., Klaus, J., 2019. Intestinal organoids as a novel complementary model to dissect inflammatory bowel disease. Stem Cells Int. 2019, 1-15. http://www.ncbi.nlm.nih.gov/pubmed/31015842
|
Srivastava, V.P., 2007. Effects of an inserted endoscope on chyme movement in small intestine-A theoretical model. Applications and Applied Mathematics (AAM):An International Journal 2, 79-91. http://www.ams.org/mathscinet-getitem?mr=2365743
|
Tanner, R.I., 2014. Engineering rheology. (2nd ed.). UK:Oxford University Press.
|
Tripathi, D., Akbar, N.S., Khan, Z.H., Bég, O.A., 2016. Peristaltic transport of bi-viscosity fluids through a curved tube:a mathematical model for intestinal flow. Proc. Inst. Mech. Eng. Part H:J. Eng. Med. 230, 817-828. http://www.researchgate.net/publication/301653390_Peristaltic_transport_of_bi-viscosity_fluids_through_a_curved_tube_a_mathematical_model_for_intestinal_flow
|
Tripathi, D., Anwar Bég, O., 2013. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium:a study of chyme dynamics through the diseased intestine. Math. Biosci. 248, 67-77. http://www.sciencedirect.com/science/article/pii/S0025556413002708
|
Tripathi, D., Bég, O.A., Gupta, P.K., Radhakrishnamacharya, G., Mazumdar, J., 2015. DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media:a digestive transport model. J. Bionic Eng. 12, 643-655. doi: 10.1016/S1672-6529(14)60154-2
|