Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Shuo Chen, Shunfeng Jiang, Hong Jiang. A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 238-247. doi: 10.1016/j.jobab.2020.10.002
Citation: Shuo Chen, Shunfeng Jiang, Hong Jiang. A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 238-247. doi: 10.1016/j.jobab.2020.10.002

A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications

doi: 10.1016/j.jobab.2020.10.002
Funds:

the Key Special Program on the S & T for the Pollution Control, and Treatment of Water Bodies 2017ZX07603-003

More Information
  • Corresponding author: shunfeng Jiang, E-mail address:jsf@mail.ustc.edu.cn
  • Received Date: 2020-04-18
  • Accepted Date: 2020-07-13
  • Rev Recd Date: 2020-06-15
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • As a new research focus in the field of biological resources, crayfish shells have great potential for development and utilization. In this review, the typical methods and research progress of separating the primary components such as chitosan, protein, and astaxanthin from crayfish shells and converting crayfish shells into functional carbon-based materials are introduced in detail. Then, the application of crayfish shell and typically modified crayfish-shell biochar in adsorption, antibacterial, electrochemical, etc. is reviewed. Finally, the future research outlook is proposed. This review can provide some perspectives on the development of the application of crayfish shells and crayfish-shell derivatives.

     

  • loading
  • Abdou, E.S., Nagy, K.S., Elsabee, M.Z., 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99, 1359-1367. doi: 10.1016/j.biortech.2007.01.051
    Aragay, G., Pons, J., Merko i, A., 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433-3458. doi: 10.1021/cr100383r
    Armenta-López, R., Guerrero, I.L., Huerta, S., 2002. Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J. Food Sci. 67, 1002-1006. doi: 10.1111/j.1365-2621.2002.tb09443.x
    Arvanitoyannis, I.S., Kassaveti, A., 2008. Fish industry waste:treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 43, 726-745. doi: 10.1111/j.1365-2621.2006.01513.x
    Azuma, K., Osaki, T., Wakuda, T., Tsuka, T., Imagawa, T., Okamoto, Y., Minami, S., 2012. Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation 35, 1462-1465. doi: 10.1007/s10753-012-9459-0
    Bajaj, M., Winter, J., Gallert, C., 2011. Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem. Eng. J. 56, 51-62. doi: 10.1016/j.bej.2011.05.006
    Bautista, J., Jover, M., Gutierrez, J.F., Corpas, R., Cremades, O., Fontiveros, E., Iglesias, F., Vega, J., 2001. Preparation of crayfish chitin by in situ lactic acid production. Process. Biochem. 37, 229-234. doi: 10.1016/S0032-9592(01)00202-3
    Benhabiles, M.S., Salah, R., Lounici, H., Drouiche, N., Goosen, M.F.A., Mameri, N., 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29, 48-56. doi: 10.1016/j.foodhyd.2012.02.013
    Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965-977. http://europepmc.org/abstract/MED/18761143
    Bi, W., Tian, M., Zhou, J., Row, K.H., 2010. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 2243-2248. doi: 10.1016/j.jchromb.2010.06.034
    Bozorgpour, F., Ramandi, H.F., Jafari, P., Samadi, S., Yazd, S.S., Aliabadi, M., 2016. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent:comparison with chitosan/Al2O3/Fe3O4 beads. Int. J. Biol. Macromol. 93, 557-565. doi: 10.1016/j.ijbiomac.2016.09.015
    Brett, D.J., Atkinson, A., Brandon, N.P., Skinner, S.J., 2008. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568-1578. doi: 10.1039/b612060c
    Bridgwater, A.V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68-94. doi: 10.1016/j.biombioe.2011.01.048
    Bueno-Solano, C., López-Cervantes, J., Campas-Baypoli, O.N., Lauterio-García, R., Adan-Bante, N.P., Sánchez-Machado, D.I., 2009. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 112, 671-675. doi: 10.1016/j.foodchem.2008.06.029
    Cai, Y.X., Xia, C., Wang, B.Y., Zhang, W., Wang, Y., Zhu, B., 2017. Bioderived calcite as electrolyte for solid oxide fuel cells:a strategy toward utilization of waste shells. ACS Sustain. Chem. Eng. 5, 10387-10395. doi: 10.1021/acssuschemeng.7b02406
    Cao, W., Tan, C., Zhan, X., Li, H., Zhang, C., 2014. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste. Food Chem. 164, 136-141. doi: 10.1016/j.foodchem.2014.05.042
    Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., Sun, Z., 2007. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J. Hazard Mater. 139, 293-300. doi: 10.1016/j.jhazmat.2006.06.034
    Cheung, I.W.Y., Li-Chan, E.C.Y., 2010. Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chem. 122, 1003-1012. doi: 10.1016/j.foodchem.2010.03.057
    de Holanda, H.D., Netto, F.M., 2006. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci. 71, C298-C303. doi: 10.1111/j.1750-3841.2006.00040.x
    Devi, R., Dhamodharan, R., 2018. Sustainable process for separating chitin and simultaneous synthesis of carbon nanodots from shellfish waste using 2% aqueous urea solution. ACS Sustain. Chem. Eng. 6, 11313-11325. doi: 10.1021/acssuschemeng.8b00877
    Du, J., Tan, E., Kim, H.J., Zhang, A., Bhattacharya, R., Yarema, K.J., 2014. Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr. Polym. 99, 483-490. doi: 10.1016/j.carbpol.2013.08.050
    Dun, Y.H., Li, Y.Q., Xu, J.H., Hu, Y.L., Zhang, C.Y., Liang, Y.X., Zhao, S.M., 2019. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int. J. Biol. Macromol. 123, 420-426. doi: 10.1016/j.ijbiomac.2018.11.088
    Elizabeth, I., Singh, B.P., Trikha, S., Gopukumar, S., 2016. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium Ion batteries. J. Power Sources 329, 412-421. doi: 10.1016/j.jpowsour.2016.08.106
    Fang, G., Liu, C., Gao, J., Dionysiou, D.D., Zhou, D., 2015. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 49, 5645-5653. doi: 10.1021/es5061512
    Gamage, A., Shahidi, F., 2007. Use of chitosan for the removal of metal Ion contaminants and proteins from water. Food Chem. 104, 989-996. doi: 10.1016/j.foodchem.2007.01.004
    Gao, C., Zhang, A., Chen, K.Q., Hao, Z.K., Tong, J.M., Ouyang, P.K., 2015. Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochem. Eng. J. 97, 59-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2497b81f9b13e0e869f879b31462d32b
    Gildberg, A., Stenberg, E., 2001. A new process for advanced utilisation of shrimp waste. Process. Biochem. 36, 809-812. doi: 10.1016/S0032-9592(00)00278-8
    Guo, J., Song, Y., Ji, X., Ji, L., Cai, L., Wang, Y., Zhang, H., Song, W., 2019. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 12, DOI: 10.3390/ma12020241.
    Hamed, I., zogul, F., Regenstein, J.M., 2016. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides):a review. Trends Food Sci. Technol. 48, 40-50. doi: 10.1016/j.tifs.2015.11.007
    Handayani, A.D., Sutrisno, Indraswati, N., Ismadji, S., 2008. Extraction of astaxanthin from giant tiger (Panaeus Monodon) shrimp waste using palm oil:studies of extraction kinetics and thermodynamic. Bioresour. Technol. 99, 4414-4419. doi: 10.1016/j.biortech.2007.08.028
    He, F., Ma, F., Li, J.L., Li, T., Li, G.X., 2014. Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles. Ceram. Int. 40, 6441-6446. doi: 10.1016/j.ceramint.2013.11.094
    Huang, J.B., Mao, Z.Q., Liu, Z.X., Wang, C., 2007. Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem. Commun. 9, 2601-2605. doi: 10.1016/j.elecom.2007.07.036
    Huang, S., Wang, L.M., Sivendiran, T., Bohrer, B.M., 2018. Review:amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 58, 2673-2678. doi: 10.1080/10408398.2017.1396202
    Irna, C., Jaswir, I., Othman, R., Jimat, D.N., 2018. Comparison between high-pressure processing and chemical extraction:astaxanthin yield from six species of shrimp carapace. J. Diet. Suppl. 15, 805-813. doi: 10.1080/19390211.2017.1387885
    Kaur, S., Dhillon, G.S., 2015. Recent trends in biological extraction of chitin from marine shell wastes:a review. Crit. Rev. Biotechnol. 35, 44-61. doi: 10.3109/07388551.2013.798256
    Kaya, M., Baran, T., Karaarslan, M., 2015. A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat. Prod. Res. 29, 1477-1480. doi: 10.1080/14786419.2015.1026341
    Kohsari, I., Shariatinia, Z., Pourmortazavi, S.M., 2016. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr. Polym. 140, 287-298. doi: 10.1016/j.carbpol.2015.12.075
    Kumari, S., Kumar Annamareddy, S.H., Abanti, S., Kumar Rath, P., 2017. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 104, 1697-1705. doi: 10.1016/j.ijbiomac.2017.04.119
    Lee, M.Y., Hong, K.J., Kajiuchi, T., Yang, J.W., 2004. Determination of the efficiency and removal mechanism of cobalt by crab shell particles. J. Chem. Technol. Biotechnol. 79, 1388-1394. doi: 10.1002/jctb.1139
    Liang, C., Li, Z., Dai, S., 2008. Mesoporous carbon materials:synthesis and modification. Angew. Chem. Int. Ed. Engl. 47, 3696-3717. doi: 10.1002/anie.200702046
    Lim, K.C., Yusoff, F.M., Shariff, M., Kamarudin, M.S., 2018. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 10, 738-773. doi: 10.1111/raq.12200
    Liu, R.R., Zhang, H.M., Liu, S.W., Zhang, X., Wu, T.X., Ge, X., Zang, Y.P., Zhao, H.J., Wang, G.Z., 2016. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 18, 4095-4101. doi: 10.1039/C5CP06970J
    Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of biochar-based functional materials:toward a sustainable platform carbon material. Chem. Rev. 115, 12251-12285. doi: 10.1021/acs.chemrev.5b00195
    Long, L., Xue, Y.W., Zeng, Y.F., Yang, K., Lin, C.J., 2017. Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. J. Clean. Prod. 166, 1244-1252. doi: 10.1016/j.jclepro.2017.08.122
    Mahdy Samar, M., El-Kalyoubi, M.H., Khalaf, M.M., Abd El-Razik, M.M., 2013. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 58, 33-41. doi: 10.1016/j.aoas.2013.01.006
    Mondal, A.K., Kretschmer, K., Zhao, Y.F., Liu, H., Fan, H.B., Wang, G.X., 2017. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium Ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72-80. doi: 10.1016/j.micromeso.2017.03.019
    Morris, A., Beeram, S., Hardaway, C.J., Richert, J.C., Sneddon, J., 2012. Use of ground crawfish shells for the removal of chromium in solution. Microchem. J. 105, 2-8. doi: 10.1016/j.microc.2012.06.009
    Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Garcia, H., 2014. ChemInform abstract:carbocatalysis by graphene-based materials. Chem. Rev. 114, 6179-6212. doi: 10.1021/cr4007347
    Nú ez-Gómez, D., Alves, A.A.D.A., Lapolli, F.R., Lobo-Recio, M.A., 2017. Aplication of the statistical experimental design to optimize mine-impacted water (MIW) remediation using shrimp-shell. Chemosphere 167, 322-329. doi: 10.1016/j.chemosphere.2016.09.094
    Oguz, E., 2005. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag. J. Colloid Interface Sci. 281, 62-67. doi: 10.1016/j.jcis.2004.08.074
    Oliveira Cavalheiro, J.M., Oliveira de Souza, E., Bora, P.S., 2007. Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresour. Technol. 98, 602-606. doi: 10.1016/j.biortech.2006.02.018
    Park, J.H., Wang, J.J., Xiao, R., Zhou, B.Y., Delaune, R.D., Seo, D.C., 2018. Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char. J. Colloid Interface Sci. 525, 143-151. doi: 10.1016/j.jcis.2018.04.078
    Parvez, S., Rahman, M.M., Khan, M.A., Khan, M.A.H., Islam, J.M.M., Ahmed, M., Rahman, M.F., Ahmed, B., 2012. Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym. Bull. 69, 715-731. doi: 10.1007/s00289-012-0761-7
    Peng, Q., Nunes, L.M., Greenfield, B.K., Dang, F., Zhong, H., 2016. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environ. Int. 88, 261-268. doi: 10.1016/j.envint.2015.12.035
    Prochaska, C.A., Zouboulis, A.I., 2006. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol. Eng. 26, 293-303. doi: 10.1016/j.ecoleng.2005.10.009
    Qin, L., Zhou, Z.P., Dai, J.D., Ma, P., Zhao, H.B., He, J.S., Xie, A., Li, C.X., Yan, Y.S., 2016. Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol. J. Taiwan Inst. Chem. Eng. 62, 228-238. doi: 10.1016/j.jtice.2016.02.009
    Qu, J.Y., Lv, S., Peng, X.Y., Tian, S., Wang, J., Gao, F., 2016. Nitrogen-doped porous "green carbon" derived from shrimp shell:combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. J. Alloy. Compd. 671, 17-23. doi: 10.1016/j.jallcom.2016.02.064
    Rech, A.S., Rech, J.C., Caprario, J., Tasca, F.A., Recio, M.,L., Finotti, A.R., 2019. Use of shrimp-shell for adsorption of metals present surface runoff. Water Sci. Technol. 79, 2221-2230. doi: 10.2166/wst.2019.213
    Riva, R., Ragelle, H., des Rieux, A., Duhem, N., Jér me, C., Préat, V., 2011. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Berlin, Heidelberg:Springer Berlin Heidelberg, 19-44.
    Rødde, R.H., Einbu, A., V rum, K.M., 2008. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 71, 388-393. doi: 10.1016/j.carbpol.2007.06.006
    Sachindra, N.M., Bhaskar, N., Mahendrakar, N.S., 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag. 26, 1092-1098. doi: 10.1016/j.wasman.2005.07.002
    Sachindra, N.M., Bhaskar, N., Siddegowda, G.S., Sathisha, A.D., Suresh, P.V., 2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol. 98, 1642-1646. doi: 10.1016/j.biortech.2006.05.041
    Sachindra, N.M., Mahendrakar, N.S., 2005. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 96, 1195-1200. doi: 10.1016/j.biortech.2004.09.018
    Samar, M.M., El-Kalyoubi, M.H., Khalaf, M.M., Abd El-Razik, M.M., 2013. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Annals Agr. Sci. 58, 33-41. doi: 10.1016/j.aoas.2013.01.006
    Seyfarth, F., Schliemann, S., Elsner, P., Hipler, U.C., 2008. Antifungal effect of high-and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int. J. Pharm. 353, 139-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c94d6075cc12a7c67f16ea442e4c40d8
    Sini, T.K., Santhosh, S., Mathew, P.T., 2007. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr. Res. 342, 2423-2429. doi: 10.1016/j.carres.2007.06.028
    Sugawara, A., Nishimura, T., Yamamoto, Y., Inoue, H., Nagasawa, H., Kato, T., 2006. Self-organization of oriented calcium carbonate/polymer composites:effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chem. Int. Ed. Engl. 45, 2876-2879. doi: 10.1002/anie.200503800
    Taher, F.A., Ibrahim, S.A., El-Aziz, A.A., Abou El-Nour, M.F., El-Sheikh, M.A., El-Husseiny, N., Mohamed, M.M., 2019. Anti-proliferative effect of chitosan nanoparticles (extracted from crayfish Procambarus clarkii, Crustacea:Cambaridae) against MDA-MB-231 and SK-BR-3 human breast cancer cell lines. Int. J. Biol. Macromol. 126, 478-487. doi: 10.1016/j.ijbiomac.2018.12.151
    Tudor, H.E.A., Gryte, C.C., Harris, C.C., 2006. Seashells:detoxifying agents for metal-contaminated waters. Water Air Soil Pollut. 173, 209-242. doi: 10.1007/s11270-005-9060-3
    Varma, A.J., Deshpande, S.V., Kennedy, J.F., 2004. Metal complexation by chitosan and its derivatives:a review. Carbohydr. Polym. 55, 77-93. doi: 10.1016/j.carbpol.2003.08.005
    Verlee, A., Mincke, S., Stevens, C.V., 2017. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 164, 268-283. doi: 10.1016/j.carbpol.2017.02.001
    Visioli, F., Artaria, C., 2017. Astaxanthin in cardiovascular health and disease:mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 8, 39-63. doi: 10.1039/C6FO01721E
    Wang, J., Liao, Z., Ifthikar, J., Shi, L., Du, Y., Zhu, J., Xi, S., Chen, Z., Chen, Z., 2017. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 185, 754-763. doi: 10.1016/j.chemosphere.2017.07.084
    Wang, L., Zheng, Y., Wang, X., Chen, S., Xu, F., Zuo, L., Wu, J., Sun, L., Li, Z., Hou, H., Song, Y., 2014. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-Ion batteries. ACS Appl. Mater. Interfaces 6, 7117-7125. doi: 10.1021/am406053s
    Wang, Q.L., Zheng, H.Z., Long, Y.J., Zhang, L.Y., Gao, M., Bai, W.J., 2011a. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49, 3134-3140. doi: 10.1016/j.carbon.2011.03.041
    Wang, X., Lee, J.S., Zhu, Q., Liu, J., Wang, Y., Dai, S., 2010. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22, 2178-2180. doi: 10.1021/cm100139d
    Wang, X.D., Ma, Y., Li, S.H., Kashyout, A.H., Zhu, B., Muhammed, M., 2011b. Ceria-based nanocomposite with simultaneous proton and oxygen Ion conductivity for low-temperature solid oxide fuel cells. J. Power Sources 196, 2754-2758. doi: 10.1016/j.jpowsour.2010.11.033
    Wei, G., Zhang, A., Chen, K., Ouyang, P., 2017. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization. Carbohydr Polym. 171, 236-241. doi: 10.1016/j.carbpol.2017.05.028
    Xiao, Y.L., Xue, Y.W., Gao, F., Mosa, A., 2017. Sorption of heavy metal ions onto crayfish shell biochar:effect of pyrolysis temperature, pH and ionic strength. J. Taiwan Inst. Chem. Eng. 80, 114-121. http://www.sciencedirect.com/science/article/pii/S1876107017304388
    Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., Islam, E., 2008. Phosphate removal from solution using steel slag through magnetic separation. J. Hazard Mater. 152, 211-215. doi: 10.1016/j.jhazmat.2007.06.103
    Xu, G., Ding, B., Nie, P., Shen, L., Dou, H., Zhang, X., 2014. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 194-199. doi: 10.1021/am4038728
    Xu, Q., Li, J.Y., Sun, J.K., Yin, Y.X., Wan, L.J., Guo, Y.G., 2017. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-Ion battery anodes. Adv. Energy Mater. 7, 1601481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=215e2f00108d95f68cc4f51a1ea09251
    Yaman, S., 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45, 651-671. doi: 10.1016/S0196-8904(03)00177-8
    Yan, J.P., Xue, Y.W., Long, L., Zeng, Y.F., Hu, X.L., 2018. Adsorptive removal of As(V) by crawfish shell biochar:batch and column tests. Environ. Sci. Pollut. Res. 25, 34674-34683. doi: 10.1007/s11356-018-3384-1
    Yang, L.G., Zhang, A.Q., Zheng, X.S., 2009. Shrimp shell catalyst for biodiesel production. Energy Fuels 23, 3859-3865. doi: 10.1021/ef900273y
    Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., Yang, L., 2013. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues:characterization and phosphate removal potential. Bioresour. Technol. 138, 8-13. doi: 10.1016/j.biortech.2013.03.057
    Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L., 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard Mater. 190, 501-507. doi: 10.1016/j.jhazmat.2011.03.083
    Yin, H.B., Yan, X.W., Gu, X.H., 2017. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands. Water Res. 115, 329-338. doi: 10.1016/j.watres.2017.03.014
    Yu, J.F., Tang, L., Pang, Y., Zeng, G.M., Feng, H.P., Zou, J.J., Wang, J.J., Feng, C.Y., Zhu, X., Ouyang, X.L., Tan, J.S., 2020. Hierarchical porous biochar from shrimp shell for persulfate activation:a two-electron transfer path and key impact factors. Appl. Catal. B:Environ. 260, 118160. http://www.sciencedirect.com/science/article/pii/S0926337319309075
    Zeng, Y.F., Xue, Y.W., Long, L., Yan, J.P., 2019. Novel crayfish shell biochar nanocomposites loaded with Ag-TiO2 nanoparticles exhibit robust antibacterial activity. Water Air Soil Pollut. 230, 50. doi: 10.1007/s11270-019-4104-2
    Zhang, H.M., Kang, S.H., Wang, G.Z., Zhang, Y.X., Zhao, H.J., 2016a. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens. 1, 875-881. doi: 10.1021/acssensors.6b00269
    Zhang, H.Z., Chen, C.R., Gray, E.M., Boyd, S.E., Yang, H., Zhang, D.K., 2016b. Roles of biochar in improving phosphorus availability in soils:a phosphate adsorbent and a source of available phosphorus. Geoderma 276, 1-6. doi: 10.1016/j.geoderma.2016.04.020
    Zhao, M., Xu, Y., Zhang, C., Rong, H., Zeng, G., 2016. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 100, 6509-6518. doi: 10.1007/s00253-016-7646-x
    Zheng, X.D., Li, B., Zhu, B., Kuang, R., Kuang, X., Xu, B.L., Ma, M.H., 2010. Crayfish carapace micro-powder (CCM):a novel and efficient adsorbent for heavy metal Ion removal from wastewater. Water 2, 257-272. doi: 10.3390/w2020257
    Zhou, D., Zhang, L., Zhou, J., Guo, S., 2004. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res. 38, 2643-2650. doi: 10.1016/j.watres.2004.03.026
    Zuo, X.X., Zhu, J., Müller-Buschbaum, P., Cheng, Y.J., 2017. Silicon based lithium-Ion battery anodes:a chronicle perspective review. Nano Energy 31, 113-143. doi: 10.1016/j.nanoen.2016.11.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (1025) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return