Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Chen Huang, Yinghei Chui, Meng Gong, Felisa Chana. Mechanical behaviour of wood compressed in radial direction:Part II. Influence of temperature and moisture content[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 266-275. doi: 10.1016/j.jobab.2020.10.005
Citation: Chen Huang, Yinghei Chui, Meng Gong, Felisa Chana. Mechanical behaviour of wood compressed in radial direction:Part II. Influence of temperature and moisture content[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 266-275. doi: 10.1016/j.jobab.2020.10.005

Mechanical behaviour of wood compressed in radial direction:Part II. Influence of temperature and moisture content

doi: 10.1016/j.jobab.2020.10.005
Funds:  This work was founded by a grant from the Natural Sciences and Engineering Research Council of Canada and New Brunswick Innovation Foundation. Their support is acknowledged greatly
More Information
  • Corresponding author: Chen Huang, E-mail address:chen.huang@unb.ca
  • Received Date: 2020-04-30
  • Accepted Date: 2020-07-08
  • Rev Recd Date: 2020-06-04
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • This study investigated the influence of pressing temperature and moisture content on the mechanical properties of wood compressed in radial direction. Jack pine (Pinus banksiana) and balsam poplar (Populus balsamifera) specimens were tested under a combination of pressing temperature (20℃, 55℃, 90℃, and 125℃) and wood moisture content (2%, 7%, 12%, and 17%). The yield stress (σy) and modulus of elasticity (MOE) of the specimens were determined from the stress-strain response. It was found that an increase in either pressing temperature or moisture content of wood generally caused a decrease in the mechanical properties for both species. The t-test results revealed that jack pine specimens are more sensitive to changes in pressing temperature and wood moisture content than balsam poplar. For jack pine specimens, at any of the pressing temperatures, the moisture content of 12% was found to be a crucial level to start a significant decrease in σy and MOE, while at any of the moisture content, a change in temperature from 55℃ to 90℃ exhibited a significant change in σy and MOE. The regression models developed can be used to predict σy and MOE as a function of temperature and moisture content.

     

  • loading
  • Ando, K., Onda, H., 1999. Mechanism for deformation of wood as a honeycomb structure I:effect of anatomy on the initial deformation process during radial compression. J. Wood Sci. 45, 120-126. doi: 10.1007/BF01192328
    Bao, M.Z., Huang, X.N., Jiang, M.L., Yu, W.J., Yu, Y.L., 2017. Effect of thermo-hydro-mechanical densification on microstructure and proper ties of poplar wood (Populus tomentosa). J. Wood Sci. 63, 591-605. doi: 10.1007/s10086-017-1661-0
    Bodig, J., 1963. The peculiarity of compression of conifers in radial direction. Forest Products J. 13, 438.
    Bodig, J., 1965. The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Products J. 15, 197-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1545968307309473
    Bodig, J., 1966. Stress-strain relationship for wood in transverse compression. J. of Mater. Sci. 1, 645-666. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2258cfe8d258cb66d2fd58e7bd4c98c
    Chu, D.M., Mu, J., Avramidis, S., Rahimi, S., Liu, S.Q., Lai, Z.Y., 2019. Functionalized surface layer on poplar wood fabricated by fire retar dant and thermal densification. Part 1:compression recovery and flammability. Forests 10, 955. http://www.researchgate.net/publication/336852149_Functionalized_Surface_Layer_on_Poplar_Wood_Fabricated_by_Fire_Retardant_and_Thermal_Densification_Part_1_Compression_Recovery_and_Flammability
    Dai, C., Steiner, P.R., 1993. Compression behavior of randomly formed wood flake mats. Wood Fiber Sci. 25, 349-358. http://agris.fao.org/agris-search/search.do?recordID=US9429727
    Deben research, 2003. Deben UK Limited, Edmunds, Suffolk, U.K.
    Easterling, K.E., Harrysson, R., Gibson, L.J., Ashby, M.F., 1982. On the mechanics of Balsa and other woods. Proc. R. Soc. Lond. A 383, 31-41. doi: 10.1098/rspa.1982.0118
    Ellis, S., Steiner, P., 2002. The behaviour of five wood species in compression. IAWA J. 23, 201-211. doi: 10.1163/22941932-90000298
    Gibson, L.J., Ashby, M.F., 1988. Cellular solids:structure and properties. New York, USA:Pergamon Press, 357.
    Gong, M., Lamason, C., Li, L., 2010. Interactive effect of surface densification and post-heat-treatment on aspen wood. J. Mater. Process. Tec h nol. 210, 293-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00b8a4bd632268b544a828ca98c608dd
    Gong, M., Nakatani, M., Yang, Y., Afzal, M., 2006. Maximum compression ratios of softwoods produced in Eastern Canada. In: Proceedings of the 9th Wood Conference on Timber Engineering. Aug. 2006, Portland, OR, USA.
    Greenspan, L., 1977. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bureau Stand. Sect. A:Phys. Chem. 81A, 89. http://ci.nii.ac.jp/naid/80014765971
    Huang, C., Gong, M., Chui, Y.H., Chan, F., 2020. Mechanical behaviour of wood compressed in radial direction. Part I. New method of deter mining the yield stress of wood on the stress-strain curve. J. Bioresour. Bioprod. 5, 186-195. http://www.sciencedirect.com/science/article/pii/S2369969820300967
    Iida, L., Norimoto, M., Yamada, I., 1984. Hygrothermal recovery of compression set. Mokuzai Gakkaishi 30, 354-358. http://agris.fao.org/agris-search/search.do?recordID=JP19850003009
    Inoue, M., Norimoto, M., Otsuka, Y., Yamada, T., 1990. Surface compression of coniferous wood lumber I. A new technique to compress the surface layer. J. Jpn. Wood Res. Soc. 36, 969-975.
    Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M., 2007. Steam or heat fixation of compressed wood. Wood Fiber Sci. 25, 224-235. http://europepmc.org/abstract/AGR/IND93050918
    Inoue, M., Sekino, N., Morooka, T., Norimoto, M., 1996. Dimensional stabilization of wood composites by steaming I. Fixation of compressed wood by pre-streaming. In:Proceedings of the Third Pacific Rim Bio-based Composites Symposium, Kyoto, Japan, 240-248. http://ci.nii.ac.jp/naid/10018325101
    Irvine, G.M., 1984. Glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi Journal 67, 118-121. http://www.researchgate.net/publication/279901388_GLASS_TRANSITIONS_OF_LIGNIN_AND_HEMICELLULOSE_AND_THEIR_MEASUREMENT_BY_DIFFERENTIAL_THERMAL_ANALYSIS
    Kamke, F.A., Casey, L.J., 1988. Fundamentals of flakeboard manufacture:internal-mat conditions. For. Prod. J. 38, 38-44. http://europepmc.org/abstract/AGR/IND88021827
    Kawai, S., Wang, Q., Sasaki, H., Tanahashi, M., 1992. Production of compressed laminated veneer lumber by steam pressing. In:Proceedings of the Third Pacific Rim Bio-based Composites Symposium, Kyoto, Japan, 121-128. http://europepmc.org/abstract/AGR/IND93033554
    Kelley, S.S., Rials, T.G., Glasser, W.G., 1987. Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22, 617-624. doi: 10.1007/BF01160778
    Kiaei, M., Behzadi Rad, M., Amani, N., 2018. Influence of densification temperature on some physical and mechanical properties of Pteroca rya fraxinifolia wood. Drvna Ind. 69, 283-287. doi: 10.5552/drind.2018.1750
    Kollmann, F.F.P., Càté, W.A. Jr, 1968. Principles of wood science and technology. Berlin, Heidelberg:Springer Berlin Heidelberg.
    Kubovskë, I., Kačíková, D., Kačík, F., 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12, 485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000230652
    Lamason, C., Gong, M., 2007. Optimization of pressing parameters for mechanically surface-densified aspen. For. Prod. J. 57, 64-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a57e5cd4ab6e57d4c82687a4824416
    Lenth, C.A., Kamke, F.A., 2001. Moisture dependent softening behavior of wood. Wood and Fiber Science 33, 492-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b56d4746c44408dc88a663c121b74fc
    Mania, P., Wróblewski, M., Wójciak, A., Roszyk, E., Moliński, W., 2020. Hardness of densified wood in relation to changed chemical composi tion. Forests 11, 506. http://www.researchgate.net/publication/341121023_Hardness_of_Densified_Wood_in_Relation_to_Changed_Chemical_Composition
    Norimoto, M., 1993. Large compressive deformation in wood. Mokuzai Gakkaishi 39, 867-874.
    Panshin, A., de Zeeuw, C., 1980. Textbook of wood technology. New York:McGraw-Hill Inc.
    Pelit, H., Yorulmaz, R., 2019. Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood. BioResour ces 14, 9739-9754.
    Skyba, O., Schwarze, F., Niemz, P., 2009. Physical and mechanical properties of thermos-hygro-mechanically (THM)-densified wood. Wood Research 54, 1-18.
    S zbir, G.D., Bektas, I., Ak, A.K., 2019. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas, Cienc. Tecnol., 21, 481-492.
    Tabarsa, T., Chui, Y.H., 2000. Stress-strain response of wood under radial compression. Part I. Test method and influences of cellular properties. Wood Fiber Sci. 32, 144-152. http://www.cabdirect.org/abstracts/20000610039.html
    Tabarsa, T., Chui, Y.H., 2001. Characterizing microscopic behavior of wood under transverse compression. Part II. Effect of species and load ing direction. Wood and Fiber Science 33, 223-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a50ed3e8021d59d3e30b5908406a2385
    Wang, S.Q., Winistorfer, P.M., 2000. Fundamentals of vertical density profile formation in wood composites. Part II. Methodology of vertical density formation under dynamic conditions. Wood and Fiber Science 32, 220-238.
    Wolcott, M., Kasal, B., Kamke, F., Dillard, D., 1989. Testing small wood specimens in transverse compression. Wood and Fiber Science 21, 320-329.
    Wolcott, M.P., Kamke, F.A., Dillard, D.A., 1990. Fundamentals of flakeboard manufacture:viscoelastic behavior of the wood component. Wood Fiber Sci. 22, 345-361.
    Wolcott, P., Kamke, F., Dillard, D., 1994. Fundamentals aspects of wood deformation pertaining to manufacture of wood-based composites. Wood Fiber Sci. 26, 496-511.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (718) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return