Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Yanyan Wang, Mengxing Zhao, Tingzhi Liu. Extraction of allelochemicals from poplar alkaline peroxide mechanical pulping effluents and their allelopathic effects on Microcystis aeruginosa[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 276-282. doi: 10.1016/j.jobab.2020.10.006
Citation: Yanyan Wang, Mengxing Zhao, Tingzhi Liu. Extraction of allelochemicals from poplar alkaline peroxide mechanical pulping effluents and their allelopathic effects on Microcystis aeruginosa[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 276-282. doi: 10.1016/j.jobab.2020.10.006

Extraction of allelochemicals from poplar alkaline peroxide mechanical pulping effluents and their allelopathic effects on Microcystis aeruginosa

doi: 10.1016/j.jobab.2020.10.006
Funds:

Tianjin Research Program of Application Foundation and Advanced Technology 14JCZDJC40500

National Undergraduate Innovation Program 2016100570039

More Information
  • Corresponding author: Tingzhi Liu, E-mail address:liutz@tust.edu.cn
  • Received Date: 2020-04-10
  • Accepted Date: 2020-07-10
  • Rev Recd Date: 2020-06-04
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • In this study, allelochemicals were extracted from pulping effluents rather than from the raw material of plants. Herein, five organic solvents (ethyl acetate (EAC), methyl tert-butyl ether (MTBE), dichloromethane (DCM), carbon tetrachloride (CTC), and petroleum (PE)) were applied to separately extracting the allelochemicals from alkaline peroxide mechanical pulp (APMP) effluents. The results from the algal density, inhibition ratio, and optical density of 446 nm (OD446nm) concluded that the extractives from the APMP effluents can act as effective allelochemicals and showed noticeable allelopathic inhibition effects on Microcystis aeruginosa growth. The results indicated that organic solvent extraction could be a practical approach to isolate the allelochemicals from the APMP effluents, which would broaden the potential application of the APMP effluents in the production of antimicrobial agents and other value-added materials.

     

  • loading
  • Barnes, J.P., Putnam, A.R., Burke, B.A., Aasen, A.J., 1987. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26, 1385-1390. doi: 10.1016/S0031-9422(00)81818-X
    Chen, Y., Zhou, S.M., Wang, Y.C., Li, L.B., 2017. Screening solvents to extract phenol from aqueous solutions by the COSMO-SAC model and extraction process simulation. Fluid Phase Equilibria 451, 12-24. doi: 10.1016/j.fluid.2017.08.007
    Coll, J.C., Bowden, B.F., Tapiolas, D.M., Dunlap, W.C., 1982. In situ isolation of allelochemicals released from soft corals (Coelenterata:Octocorallia):a totally submersible sampling apparatus. J. Exp. Mar. Biol. Ecol. 60, 293-299. doi: 10.1016/0022-0981(82)90166-6
    Covington, A.K., Brown, O.R., Criss, C.M., Dickinson, T., Fernández-Prini, R., Garnsey, R., Garnsey, R., Gough, T.E., Irish, D.E., King, E.J., 2012. Physical chemistry of organic solvent systems. In:Springer Science & Business Media. London, England:Harlesden, 1-21. http://www.springerlink.com/content/978-1-4684-1959-7
    Dachuri, V., Boyineni, J., Choi, S., Chung, H.S., Jang, S.H., Lee, C., 2016. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. J. Mol. Catal. B:Enzym. 131, 73-78. doi: 10.1016/j.molcatb.2016.06.003
    DellaGreca M., Zarrelli A., Fergola P., Cerasuolo M., Pollio A., Pinto G., 2010. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata:experiments and modelling. J. Chem. Ecol. 36, 339-349. doi: 10.1007/s10886-010-9753-y
    Freitas, A.C., Ferreira, F., Costa, A.M., Pereira, R., Antunes, S.C., Gon alves, F., Rocha-Santos, T.A., Diniz, M.S., Castro, L., Peres, I., Duarte, A.C., 2009. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Sci Total Environ. 407, 3282-3289. doi: 10.1016/j.scitotenv.2009.01.054
    Gahukar, R.T., 2012. Evaluation of plant-derived products against pests and diseases of medicinal plants:a review. Crop. Prot. 42, 202-209. doi: 10.1016/j.cropro.2012.07.026
    Geller, D.P., Das, K.C., Bagby-Moon, T., Singh, M., Hawkins, G., Kiepper, B.H., 2018. Biomass productivity of snow algae and model production algae under low temperature and low light conditions. Algal Res. 33, 133-141. doi: 10.1016/j.algal.2018.05.005
    Hideno, A., 2017. Short-time alkaline peroxide pretreatment for rapid pulping and efficient enzymatic hydrolysis of rice straw. Bioresour. Technol. 230, 140-142. doi: 10.1016/j.biortech.2017.01.058
    Hong, Y., Hu, H.Y., Sakoda, A., Sagehashi, M., 2010. Isolation and characterization of antialgal allelochemicals from Arundo donax L. Allelopathy Journal 25, 357-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a8bdcb08bea16abfa7a16819b65d9
    Jiang, Z.Y., Guo, P.Y., Chang, C., Gao, L.L., Li, S.X., Wan, J.J., 2014. Effects of allelochemicals from Ficus microcarpa on Chlorella pyrenoidosa. Braz. Arch. Biol. Technol. 57, 595-605. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132014000400595&lng=en&nrm=1.p&tlng=en
    Li, F.M., Hu, H.Y., 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 71, 6545-6553. doi: 10.1128/AEM.71.11.6545-6553.2005
    Li, L., 2016. Etraction of allelochmicals from poplar APMP effluents and its inhibition on Chlorella pyrenoidosa. Tianjin:Tianjin University of Science and Technology.
    Li, L., Hou, W.H., 2007. Inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa. Huan Jing Ke Xue 28, 2180-2186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200710005
    Li, W.X., Qi, S., Wang, N., Fei, Z.H., Farajtabar, A., Zhao, H.K., 2018. Solute-solvent and solvent-solvent interactions and preferential solvation of limonin in aqueous co-solvent mixtures of methanol and acetone. J. Mol. Liq. 263, 357-365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc9957ebff9d1d142737ed7e7965aab2
    Liu, G., Ke, M., Fan, X., Zhang, M., Zhu, Y., Lu, T., Sun, L., Qian, H., 2018a. Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in female zebrafish. Chemosphere 192, 289-296. doi: 10.1016/j.chemosphere.2017.10.167
    Liu, G.T., Zhou, C.F., Sun, L.F., Zhu, W.W., Jiang, H., Wang, H.X., An, S.Q., 2011a. Effects of Eichhornia crassipes allelochemicals on the growth of two mono-and co-cultured algae Microcystis aeruginosa and Scenedesmus obliquus. Acta Scientiae Circumstantiae 31, 2303-2311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201110033
    Liu, S., Qin, F.C., Yu, S.X., 2018b. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals. Appl. Soil Ecol. 127, 1-7. doi: 10.1016/j.apsoil.2018.02.028
    Liu, T., He, Z., Hu, H., Ni, Y., 2011b. Treatment of APMP pulping effluent based on aerobic fermentation with Aspergillus niger and post-coagulation/flocculation. Bioresour. Technol. 102, 4712-4717. doi: 10.1016/j.biortech.2011.01.047
    Liu, T., Hu, H., He, Z., Ni, Y., 2011c. Treatment of poplar alkaline peroxide mechanical pulping (APMP) effluent with Aspergillus niger. Bioresour, Technol., 102, 7361-7365. doi: 10.1016/j.biortech.2011.04.043
    Ma, H.Y., Wu, Y.L., Gan, N.Q., Zheng, L.L., Li, T.L., Song, L.R., 2015. Growth inhibitory effect of Microcystis on Aphanizomenon flos-aquae isolated from cyanobacteria bloom in Lake Dianchi, China. Harmful Algae 42, 43-51. doi: 10.1016/j.hal.2014.12.009
    Men, Y.J., Hu, H.Y., Li, F.M., 2007. Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis Trin) on the growth of several common species of green algae. J. Appl. Phycol. 19, 521-527. doi: 10.1007/s10811-007-9165-8
    Meng, P., Pei, H., Hu, W., Liu, Z., Li, X., Xu, H., 2015. Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere 141, 219-226. doi: 10.1016/j.chemosphere.2015.07.057
    Nakai, S., Inoue, Y., Hosomi, M., 2001. Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res. 35, 1855-1859. doi: 10.1016/S0043-1354(00)00444-9
    Ni, L., Acharya, K., Hao, X., Li, S., 2012. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88, 1051-1057. doi: 10.1016/j.chemosphere.2012.05.009
    Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y., Gardner, W.S., 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):the need for a dual nutrient (N & P) management strategy. Water Res. 45, 1973-1983. doi: 10.1016/j.watres.2010.09.018
    Pereira, A.L., Santos, C., Azevedo, J., Martins, T.P., Castelo-Branco, R., Ramos, V., Vasconcelos, V., Campos, A., 2018. Effects of two toxic cyanobacterial crude extracts containing microcystin-LR and cylindrospermopsin on the growth and photosynthetic capacity of the microalga Parachlorella kessleri. Algal Res. 34, 198-208. doi: 10.1016/j.algal.2018.07.016
    Popa, V.I., Dumitru, M., Volf, I., Anghel, N., 2008. Lignin and polyphenols as allelochemicals. Ind. Crop. Prod. 27, 144-149. doi: 10.1016/j.indcrop.2007.07.019
    Smallwood, I.M., 1996. Handbook of organic solvent properties. Amsterdam:Elsevier, 15-17. http://www.sciencedirect.com/science/article/pii/B9780080523781500700?np=y
    Sun, R., Sun, P., Zhang, J., Esquivel-Elizondo, S., Wu, Y., 2018. Microorganisms-based methods for harmful algal blooms control:a review. Bioresour. Technol. 248, 12-20. doi: 10.1016/j.biortech.2017.07.175
    Turlings, T.C., Tumlinson, J.H., Heath, R.R., Proveaux, A.T., Doolittle, R.E., 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17, 2235-2251. doi: 10.1007/BF00988004
    Wang, W., Meng, B., Lu, X., Liu, Y., Tao, S., 2007. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils:a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta. 602, 211-222. doi: 10.1016/j.aca.2007.09.023
    Whittaker, R.H., Feeny, P.P., 1971. Allelochemics:chemical interactions between species. Science 171, 757-770. doi: 10.1126/science.171.3973.757
    Wu, J.T., Chiang, Y.R., Huang, W.Y., Jane, W.N., 2006. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat. Toxicol. 80, 338-345. doi: 10.1016/j.aquatox.2006.09.011
    Wu, Y., Kerr, P.G., Hu, Z., Yang, L., 2010. Removal of cyanobacterial bloom from a biopond-wetland system and the associated response of zoobenthic diversity. Bioresour. Technol. 101, 3903-3908. doi: 10.1016/j.biortech.2009.12.144
    Xiao, X., Huang, H., Ge, Z., Rounge, T.B., Shi, J., Xu, X., Li, R., Chen, Y., 2014. A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare):characterization and comparison of their anti-cyanobacterial activities. Environ. Microbiol. 16, 1238-1251. doi: 10.1111/1462-2920.12226
    Yang, X., Zhang, L.H., Shi, C.P., Shang, Y., Zhang, J.L., Han, J.M., Dong, J.G., 2014. The extraction, isolation and identification of exudates from the roots of Flaveria bidentis. J. Integr. Agric. 13, 105-114. doi: 10.1016/S2095-3119(13)60495-5
    Zhang, C., Yi, Y.L., Hao, K., Liu, G.L., Wang, G.X., 2013. Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa:towards identification of algicidal substance and determination of inhibition mechanism. Chemosphere 93, 997-1004. doi: 10.1016/j.chemosphere.2013.05.068
    Zhang, T., Wu, A.P., He, M., Chen, C.P., Nie, L.W., 2007. The allelopathy and its mechanism of phenolic acids on water-bloom algae. China Environmental Science 27, 472-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200704009
    Zou, W.S., Wang, Z., Song, Q.S., Tang, S.X., de Peng, Y., 2018. Recruitment-promoting of dormant Microcystis aeruginosa by three benthic bacterial species. Harmful Algae 77, 18-28. doi: 10.1016/j.hal.2018.05.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (532) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return