Citation: | Amisha Patel, Amita R. Shah. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 108-128. doi: 10.1016/j.jobab.2021.02.001 |
Abdel-Rahman, M.A., Sonomoto, K., 2016. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 236, 176–192. doi: 10.1016/j.jbiotec.2016.08.008
|
Ahmad, E., Pant, K.K., 2018. Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. Waste Biorefinery. Elsevier, Amsterdam, pp. 409–444.
|
Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R., 2009. Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87, 1171–1183. doi: 10.1016/j.cherd.2009.07.006
|
Álvarez, C., Sáez, F., González, A., Ballesteros, I., Oliva, J.M., Negro, M.J., 2018. Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw. Holzforschung 73, 35–44. doi: 10.1515/hf-2018-0101
|
Alves de Oliveira, R., Schneider, R., Vaz Rossell, C.E., Maciel Filho, R., Venus, J., 2019. Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour. Technol. Rep. 6, 26–31. doi: 10.1016/j.biteb.2019.02.003
|
Alves de Oliveira, R., Vaz Rossell, C.E., Venus, J., Cândida Rabelo, S., Maciel Filho, R., 2018. Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. J. Biotechnol. 278, 56–63. doi: 10.1016/j.jbiotec.2018.05.006
|
Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861. doi: 10.1016/j.biortech.2009.11.093
|
Amorim, C., Silvério, S.C., Prather, K.L.J., Rodrigues, L.R., 2019. From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 37, 107397. doi: 10.1016/j.biotechadv.2019.05.003
|
Aragon, C.C., Santos, A.F., Ruiz-Matute, A.I., Corzo, N., Guisan, J.M., Monti, R., Mateo, C., 2013. Continuous production of xylooligosaccharides in a packed bed reactor with immobilized-stabilized biocatalysts of xylanase from Aspergillus versicolor. J. Mol. Catal. B: Enzym. 98, 8–14. doi: 10.1016/j.molcatb.2013.09.017
|
Arora, A., Priya, S., Sharma, P., Sharma, S., Nain, L., 2016. Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal. Agric. Biotechnol. 8, 66–72. doi: 10.1016/j.bcab.2016.08.006
|
Arvaniti, E., Bjerre, A.B., Schmidt, J.E., 2012. Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 39, 94–105. doi: 10.1016/j.biombioe.2011.12.040
|
Avanthi, A., Kumar, S., Sherpa, K.C., Banerjee, R., 2017. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels 8, 431–444. doi: 10.1080/17597269.2016.1249738
|
Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., 2013. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523. doi: 10.1016/j.rser.2012.12.022
|
Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R.A., 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod. Bioref. 4, 77–93. doi: 10.1002/bbb.188
|
Baptista, S.L., Cunha, J.T., Romaní, A., Domingues, L., 2018. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresour. Technol. 267, 481–491. doi: 10.1016/j.biortech.2018.07.068
|
Barakat, A., Mayer-Laigle, C., Solhy, A., Arancon, R.A.D., de Vries, H., Luque, R., 2014. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv. 4, 48109–48127. doi: 10.1039/C4RA07568D
|
Barbosa, F.C., Silvello, M.A., Goldbeck, R., 2020. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol. Lett. 42, 875–884. doi: 10.1007/s10529-020-02875-4
|
Barros-Rios, J., Romaní, A., Garrote, G., Ordas, B., 2015. Biomass, sugar, and bioethanol potential of sweet corn. GCB Bioenergy 7, 153–160. doi: 10.1111/gcbb.12136
|
Bhatia, S.K., Gurav, R., Choi, T.R., Jung, H.R., Yang, S.Y., Moon, Y.M., Song, H.S., Jeon, J.M., Choi, K.Y., Yang, Y.H., 2019. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271, 306–315. doi: 10.1016/j.biortech.2018.09.122
|
Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim, S., Yu, G.R., 2017. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122, 724–745. doi: 10.1016/j.energy.2017.01.005
|
Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., Sun, R.C., 2014. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. 156, 7–13. doi: 10.1016/j.foodchem.2014.01.112
|
Biswas, R., Uellendahl, H., Ahring, B.K., 2015. Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Res. 8, 1101–1116. doi: 10.1007/s12155-015-9590-5
|
Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., Chaiyaso, T., 2018. An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 256, 399–407. doi: 10.1016/j.biortech.2018.02.004
|
Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550–583. doi: 10.1039/c2gc36364j
|
Buruiana, C.T., Vizireanu, C., Garrote, G., Parajó, J.C., 2014. Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crop. Prod. 54, 32–39. doi: 10.1016/j.indcrop.2014.01.003
|
Cai, C.M., Zhang, T.Y., Kumar, R., Wyman, C.E., 2013. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 15, 3140–3145. doi: 10.1039/c3gc41214h
|
Carvalho, A.F.A., Neto, P.D.O., da Silva, D.F., Pastore, G.M., 2013. Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 51, 75–85. doi: 10.1016/j.foodres.2012.11.021
|
Carvalho, A.V., da Costa Lopes, A.M., Bogel-Łukasik, R., 2015. Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction. RSC Adv. 5, 47153–47164. doi: 10.1039/C5RA07159C
|
Ceccato-Antonini, S.R., Codato, C.B., Martini, C., Bastos, R.G., Tauk-Tornisielo, S.M., 2017. Yeast for pentose fermentation: isolation, screening, performance, manipulation, and prospects. Advances of Basic Science For Second Generation Bioethanol from Sugarcane. Springer International Publishing, Cham, pp. 133–157.
|
Champreda, V., Mhuantong, W., Lekakarn, H., Bunterngsook, B., Kanokratana, P., Zhao, X.Q., Zhang, F., Inoue, H., Fujii, T., Eurwilaichitr, L., 2019. Designing cellulolytic enzyme systems for biorefinery: from nature to application. J. Biosci. Bioeng. 128, 637–654. doi: 10.1016/j.jbiosc.2019.05.007
|
Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381. doi: 10.1016/j.biortech.2018.06.004
|
Chandel, A.K., Singh, O.V., Chandrasekhar, G., Rao, L.V., Narasu, M.L., 2010. Key drivers influencing the commercialization of ethanol-based biorefineries. J. Commer. Biotechnol. 16, 239–257. doi: 10.1057/jcb.2010.5
|
Chapla, D., Dholakiya, S., Madamwar, D., Shah, A., 2013. Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod. Process. 91, 682–692. doi: 10.1016/j.fbp.2013.08.005
|
Chapla, D., Pandit, P., Shah, A., 2012. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol. 115, 215–221. doi: 10.1016/j.biortech.2011.10.083
|
Chen, H.Z., Fu, X.G., 2016. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 57, 468–478. doi: 10.1016/j.rser.2015.12.069
|
Chu, B.C.H., Lee, H., 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25, 425–441. doi: 10.1016/j.biotechadv.2007.04.001
|
Chukwuma, O.B., Rafatullah, M., Tajarudin, H.A., Ismail, N., 2020. Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 12, 7282. doi: 10.3390/su12187282
|
Chung, Y.C., Hsu, C.K., Ko, C.Y., Chan, Y.C., 2007. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr. Res. 27, 756–761. doi: 10.1016/j.nutres.2007.09.014
|
Clark, J.H., Deswarte, F.E.I., 2008. The biorefinery concept-an integrated approach. Introduction to Chemicals from Biomass. John Wiley & Sons, Ltd., Chichester, UK, pp. 1–20.
|
Clark, J.H., Luque, R., Matharu, A.S., 2012. Green chemistry, biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng. 3, 183–207. doi: 10.1146/annurev-chembioeng-062011-081014
|
Cortez, D.V., Mussatto, S.I., Roberto, I.C., 2016. Improvement on d-xylose to xylitol biotransformation by Candida guilliermondii using cells permeabilized with triton X-100 and selected process conditions. Appl. Biochem. Biotechnol. 180, 969–979. doi: 10.1007/s12010-016-2146-0
|
Courtade, G., Le, S.B., Sætrom, G.I., Brautaset, T., Aachmann, F.L., 2017. A novel expression system for lytic polysaccharide monooxygenases. Carbohydr. Res. 448, 212–219. doi: 10.1016/j.carres.2017.02.003
|
Cubas-Cano, E., González-Fernández, C., Ballesteros, M., Tomás-Pejó, E., 2019. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: anaerobiosis as a key factor. Biotechnol. Prog. 35, e2739. doi: 10.1002/btpr.2739
|
da Costa Sousa, L., Chundawat, S.P., Balan, V., Dale, B.E., 2009. 'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20, 339–347. doi: 10.1016/j.copbio.2009.05.003
|
da Silva Menezes, B., Rossi, D.M., Squina, F., Ayub, M.A.Z., 2018. Xylooligosaccharides production by fungi cultivations in rice husk and their application as substrate for lactic acid bacteria growth. Bioresour. Technol. Rep. 2, 100–106. doi: 10.1016/j.biteb.2018.05.004
|
Dasgupta, D., Junghare, V., Nautiyal, A.K., Jana, A., Hazra, S., Ghosh, D., 2019. Xylitol production from lignocellulosic pentosans: a rational strain engineering approach toward a multiproduct biorefinery. J. Agric. Food Chem. 67, 1173–1186. doi: 10.1021/acs.jafc.8b05509
|
Dietrich, K., Dumont, M.J., del Rio, L.F., Orsat, V., 2017. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 9, 58–70. doi: 10.1016/j.spc.2016.09.001
|
Dimos, K., Paschos, T., Louloudi, A., Kalogiannis, K.G., Lappas, A.A., Papayannakos, N., Kekos, D., Mamma, D., 2019. Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5, 5. doi: 10.3390/fermentation5010005
|
Dupont Accellerase®, 2019. Cellulase enzyme complex for lignocellulosic biomass hydrolysis. Available at: http://www.accellerase.dupont.com. Accessed 1 July 2019.
|
Fache, M., Boutevin, B., Caillol, S., 2016. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46. doi: 10.1021/acssuschemeng.5b01344
|
Faryar, R., Linares-Pastén, J.A., Immerzeel, P., Mamo, G., Andersson, M., Stålbrand, H., Mattiasson, B., Karlsson, E.N., 2015. Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod. Process. 93, 1–10. doi: 10.1016/j.fbp.2014.11.004
|
Fernando, S., Adhikari, S., Chandrapal, C., Murali, N., 2006. Biorefineries: current status, challenges, and future direction. Energy Fuels 20, 1727–1737. doi: 10.1021/ef060097w
|
Finegold, S.M., Li, Z., Summanen, P.H., Downes, J., Thames, G., Corbett, K., Dowd, S., Krak, M., Heber, D., 2014. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 5, 436–445. doi: 10.1039/c3fo60348b
|
Garde, A., Jonsson, G., Schmidt, A.S., Ahring, B.K., 2002. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour. Technol. 81, 217–223. doi: 10.1016/S0960-8524(01)00135-3
|
Ghosh, D., Dasgupta, D., Agrawal, D., Kaul, S., Adhikari, D.K., Kurmi, A.K., Arya, P.K., Bangwal, D., Negi, M.S., 2015. Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energy Fuels 29, 3149–3157. doi: 10.1021/acs.energyfuels.5b00144
|
Gibson, G.R., Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412. doi: 10.1093/jn/125.6.1401
|
Grand View Research, 2015. Furfural Market Size Growth & Value, Industry Research Report, 2020. Grand View Research, Inc., U. S. Available at: https://www.grandviewresearch.com/industry-analysis/furfural-market. Accessed 4 April 2020.
|
Grand View Research, 2017a. Vanillin Market Size Worth $724.5 Million By 2025, Growth Rate: 7.0%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-vanillin-market. Accessed 4 April 2020.
|
Grand View Research, 2017b. Xylitol Market Size Worth $1.37 Billion By 2025, Growth Rate: 6.6%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-xylitol-market. Accessed 4 April 2020.
|
Grand View Research, 2019a. Lactic Acid Market Size & Share, Global Industry Report, 2019-2025. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market. Accessed 4 April 2020.
|
Grand View Research, 2019b. Lactic Acid Market Size Worth $8.77 Billion By 2025, CAGR: 18.7%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-lactic-acid-and-poly-lactic-acid-market1/. Accessed 4 April 2020.
|
Gurgel, L.V.A., Pimenta, M.T.B., Curvelo, A.A.D.S., 2016. Ethanol-water organosolv delignification of liquid hot water (LHW) pretreated sugarcane bagasse enhanced by high-pressure carbon dioxide (HP-CO2). Ind. Crop. Prod. 94, 942–950. doi: 10.1016/j.indcrop.2016.10.003
|
Gusakov, A.V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N., Burlingame, R., Emalfarb, M., Baez, M., Sinitsyn, A.P., 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97, 1028–1038. doi: 10.1002/bit.21329
|
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., Sawayama, S., 2009. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour. Technol. 100, 2706–2711. doi: 10.1016/j.biortech.2008.12.057
|
Hoyer, K., Galbe, M., Zacchi, G., 2013. The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process. Biochem. 48, 289–293. doi: 10.1016/j.procbio.2012.12.020
|
Hsu, C.K., Liao, J.W., Chung, Y.C., Hsieh, C.P., Chan, Y.C., 2004. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 134, 1523–1528. doi: 10.1093/jn/134.6.1523
|
Irmak, S., Canisag, H., Vokoun, C., Meryemoglu, B., 2017. Xylitol production from lignocellulosics: are corn biomass residues good candidates?Biocatal. Agric. Biotechnol. 11, 220–223. doi: 10.1016/j.bcab.2017.07.010
|
Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559. doi: 10.1039/C5PY00263J
|
Jagtap, S., Deshmukh, R.A., Menon, S., Das, S., 2017. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour. Technol. 245, 283–288. doi: 10.1016/j.biortech.2017.08.174
|
Jain, I., Kumar, V., Satyanarayana, T., 2015. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Biol. 53, 131–142. http://europepmc.org/abstract/MED/25872243
|
Jaisamut, K., Paulová, L., Patáková, P., Kotúčová, S., Rychtera, M., 2016. Effect of sodium sulfite on acid pretreatment of wheat straw with respect to its final conversion to ethanol. Biomass Bioenergy 95, 1–7. doi: 10.1016/j.biombioe.2016.08.022
|
Jin, Y.S., Jeffries, T.W., 2004. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng. 6, 229–238. doi: 10.1016/j.ymben.2003.11.006
|
Jönsson, L.J., Martín, C., 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112. doi: 10.1016/j.biortech.2015.10.009
|
Junqueira, T.L., Cavalett, O., Bonomi, A., 2016. The virtual sugarcane biorefinery—A simulation tool to support public policies formulation in bioenergy. Ind. Biotechnol. 12, 62–67. doi: 10.1089/ind.2015.0015
|
Kamm, B., Kamm, M., 2004. Principles of biorefineries. Appl. Microbiol. Biotechnol. 64, 137–145. doi: 10.1007/s00253-003-1537-7
|
Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562–2568. doi: 10.1016/j.biortech.2008.11.011
|
Kar, Y., Deveci, H., 2006. Importance of P-series fuels for flexible-fuel vehicles (FFVs) and alternative fuels. Energy Sources Part A: Recover. Util. Environ. Eff. 28, 909–921. doi: 10.1080/00908310600718841
|
Katsimpouras, C., Zacharopoulou, M., Matsakas, L., Rova, U., Christakopoulos, P., Topakas, E., 2017. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresour. Technol. 244, 1129–1136. doi: 10.1016/j.biortech.2017.08.112
|
Kim, M., Day, D.F., 2011. Composition of sugar cane, energy cane, and sweet Sorghum suitable for ethanol production at Louisiana sugar Mills. J. Ind. Microbiol. Biotechnol. 38, 803–807. doi: 10.1007/s10295-010-0812-8
|
Kiso, Y., Iino, T., Kato, S., 2005. Remedies For Hyperammonemia. Suntory Holdings Ltd., United States.
|
Knauf, M., Moniruzzaman, M., 2004. Lignocellulosic biomass processing: a perspective. Int. Sugar J. 106, 147–150. http://www.cabdirect.org/abstracts/20043043925.html
|
Ko, C.H., Chiang, P.N., Chiu, P.C., Liu, C.C., Yang, C.L., Shiau, I.L., 2008. Integrated xylitol production by fermentation of hardwood wastes. J. Chem. Technol. Biotechnol. 83, 534–540. doi: 10.1002/jctb.1828
|
Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M., 2017. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55. doi: 10.3390/bioengineering4020055
|
Kreith, F., Krumdieck, S., 2013. Principles of Sustainable Energy Systems. CRC Press, Boca Raton.
|
Kuglarz, M., Alvarado-Morales, M., Dąbkowska, K., Angelidaki, I., 2018. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 265, 191–199. doi: 10.1016/j.biortech.2018.05.099
|
Kuglarz, M., Alvarado-Morales, M., Karakashev, D., Angelidaki, I., 2016. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour. Technol. 200, 639–647. doi: 10.1016/j.biortech.2015.10.081
|
Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., Verma, P., 2020. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244. doi: 10.1016/j.fuproc.2019.106244
|
Kumar, V., Satyanarayana, T., 2015. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris. Bioresour. Technol. 179, 382–389. doi: 10.1016/j.biortech.2014.12.049
|
Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L., 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101, 1036–1043. doi: 10.1016/j.biortech.2009.08.091
|
Li, C., Wang, L., Chen, Z.X., Li, Y.F., Wang, R., Luo, X.H., Cai, G.L., Li, Y.N., Yu, Q.S., Lu, J., 2015. Ozonolysis pretreatment of maize stover: the interactive effect of sample particle size and moisture on ozonolysis process. Bioresour. Technol. 183, 240–247. doi: 10.1016/j.biortech.2015.01.042
|
Li, H.Y., Wang, B., Wen, J.L., Cao, X.F., Sun, S.N., Sun, R.C., 2018. Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Convers. Manag. 155, 58–67. doi: 10.1016/j.enconman.2017.10.089
|
Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M., Li, L.Z., 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570–3575. doi: 10.1016/j.biortech.2009.02.040
|
Limayem, A., Ricke, S.C., 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38, 449–467. doi: 10.1016/j.pecs.2012.03.002
|
Lin, C., Luque, R., 2014. Renewable Resources For Biorefineries. Royal Society of Chemistry, Cambridge.
|
Liu, C.G., Xiao, Y., Xia, X.X., Zhao, X.Q., Peng, L.C., Srinophakun, P., Bai, F.W., 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37, 491–504. doi: 10.1007/s00359-019-01336-2
|
Liu, X.Q., Liu, Y., Jiang, Z.Q., Liu, H.J., Yang, S.Q., Yan, Q.J., 2018. Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chem. 264, 310–318. doi: 10.1016/j.foodchem.2018.05.023
|
Liu, Y.J., Li, B., Feng, Y.G., Cui, Q., 2020. Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 40, 107535. doi: 10.1016/j.biotechadv.2020.107535
|
Liu, Z., Li, L.F., Liu, C., Xu, A.R., 2018b. Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour. Technol. 260, 417–420. doi: 10.1016/j.biortech.2018.03.117
|
Lopes, A.M., Ferreira Filho, E.X., Moreira, L.R.S., 2018. An update on enzymatic cocktails for lignocellulose breakdown. J. Appl. Microbiol. 125, 632–645. doi: 10.1111/jam.13923
|
Lopes, M.S.G., Gomez, J.G.C., Taciro, M.K., Mendonça, T.T., Silva, L.F., 2014. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J. Ind. Microbiol. Biotechnol. 41, 1353–1363. doi: 10.1007/s10295-014-1485-5
|
López-Linares, J.C., Romero, I., Cara, C., Castro, E., Mussatto, S.I., 2018. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247, 736–743. doi: 10.1016/j.biortech.2017.09.139
|
López-Linares, J.C., Romero, I., Cara, C., Ruiz, E., Moya, M., Castro, E., 2014. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122, 112–118. doi: 10.1016/j.fuel.2014.01.024
|
Lynd, L.R., Van Zyl, W.H., McBride, J.E., Laser, M., 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583. doi: 10.1016/j.copbio.2005.08.009
|
Mano, M.C.R., Neri-Numa, I.A., Silva, J.B., Paulino, B.N., Pessoa, M.G., Pastore, G.M., 2018. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 102, 17–37. doi: 10.1007/s00253-017-8564-2
|
Market Watch, 2019. At 4.1% CAGR, Xylooligosaccharides (XOS) Market Size will reach 130 Million USD by 2025. Market Study Report LLC. Available at: https://www.marketwatch.com/press-release. Accessed 30 June 2019.
|
Martín, C., Thomsen, A.B., 2007. Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 82, 174–181. doi: 10.1002/jctb.1648
|
Martin, M.A., 2010. First generation biofuels compete. N Biotechnol 27, 596–608. doi: 10.1016/j.nbt.2010.06.010
|
Masran, R., Bahrin, E.K., Ibrahim, M.F., Phang, L.Y., Abd-Aziz, S., 2020. Simultaneous pretreatment and saccharification of oil palm empty fruit bunch using laccase-cellulase cocktail. Biocatal. Agric. Biotechnol. 29, 101824. doi: 10.1016/j.bcab.2020.101824
|
Mathew, A.K., Abraham, A., Mallapureddy, K.K., Sukumaran, R.K., 2018. Lignocellulosic biorefinery wastes, or resources? Waste Biorefinery. Elsevier, Amsterdam, pp. 267–297.
|
Maurya, D.P., Singla, A., Negi, S., 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3Biotech 5, 597–609. doi: 10.1007/s13205-015-0279-4
|
McCarthy, J.E., Tiemann, M., 2006. MTBE in gasoline: clean air and drinking water issues.
|
Menon, V., Rao, M.L., 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550. doi: 10.1016/j.pecs.2012.02.002
|
Messaoudi, Y., Smichi, N., Bouachir, F., Gargouri, M., 2019. Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste Biomass Valorization 10, 357–367. doi: 10.1007/s12649-017-0062-3
|
Mhetras, N., Mapre, V., Gokhale, D., 2019. Xylooligosaccharides (XOS) as emerging prebiotics: its production from lignocellulosic material. Adv. Microbiol. 9, 14–20. doi: 10.4236/aim.2019.91002
|
Ministry of Petroleum and Natural Gas, 2019. The Gazette of India, Pradhan Mantri Jaiv Indhan- Vatavaran Anukool fasal awashesh Nivaran (JI-VAN) Yojana, New Delhi. Available at: http://egazette.nic.in. Accessed 16 May 2019.
|
Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N., 2015. Xylitol biological production: a review of recent studies. Food Rev. Int. 31, 74–89. doi: 10.1080/87559129.2014.961077
|
Moldes, A.B., Torrado, A., Converti, A., Dominguez, J.M., 2006. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Appl. Biochem. Biotechnol. 135, 219–227. doi: 10.1385/ABAB:135:3:219
|
Montipó, S., Ballesteros, I., Fontana, R.C., Liu, S.Q., Martins, A.F., Ballesteros, M., Camassola, M., 2018. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. Bioresour. Technol. 249, 1017–1024. doi: 10.1016/j.biortech.2017.11.001
|
Morais Junior, W.G., Pacheco, T.F., Trichez, D., Almeida, J.R.M., Gonçalves, S.B., 2019. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36, 349–361. doi: 10.1002/yea.3394
|
Mordor Intelligence, 2019. Polylactic Acid (PLA) Market—Segmented by Raw Material, Form, Application, and Geography—Growth, Trends and Forecast (2019–2024), India. Available at: https://www.mordorintelligence.com/industry-reports/polylactic-acid-market. Accessed 30 June 2019.
|
Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M.C., Esteves, M.P., 2007. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT-Food Sci. Technol. 40, 963–972. doi: 10.1016/j.lwt.2006.07.013
|
Moure, A., Gullón, P., Domínguez, H., Parajó, J.C., 2006. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process. Biochem. 41, 1913–1923. doi: 10.1016/j.procbio.2006.05.011
|
Mussatto, S.I., 2012. Application of xylitol in food formulations and benefits for health. d-Xylitol. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 309–323.
|
Nosratpour, M.J., Karimi, K., Sadeghi, M., 2018. Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J. Environ. Manage. 226, 329–339. doi: 10.1016/j.jenvman.2018.08.058
|
Novozyme, 2019. Available at: http://www.novozyme.com. Accessed 1 July 2019.
|
Oh, Y.K., Hwang, K.R., Kim, C., Kim, J.R., Lee, J.S., 2018. Recent developments and key barriers to advanced biofuels: a short review. Bioresour. Technol. 257, 320–333. doi: 10.1016/j.biortech.2018.02.089
|
Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I., Chamorro, M. Á., Sáez, F., Ballesteros, M., Moreno, A.D., 2017. A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3, 15. doi: 10.3390/fermentation3020015
|
Palframan, R.J., Gibson, G.R., Rastall, R.A., 2003. Carbohydrate preferences of bifidobacterium species isolated from the human gut. Curr. Issues Intestinal Microbiol. 4, 71–75. http://www.ncbi.nlm.nih.gov/pubmed/14503691
|
Palonen, H., Thomsen, A.B., Tenkanen, M., Schmidt, A.S., Viikari, L., 2004. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol. 117, 1–17. doi: 10.1385/ABAB:117:1:01
|
Pan, W.Y., Perrotta, J.A., Stipanovic, A.J., Nomura, C.T., Nakas, J.P., 2012. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J. Ind. Microbiol. Biotechnol. 39, 459–469. doi: 10.1007/s10295-011-1040-6
|
Park, J., Jones, B., Koo, B., Chen, X.W., Tucker, M., Yu, J.H., Pschorn, T., Venditti, R., Park, S., 2016. Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour. Technol. 199, 59–67. doi: 10.1016/j.biortech.2015.08.059
|
Patel, A., Patel, H., Divecha, J., Shah, A.R., 2019a. Enhanced production of ethanol from enzymatic hydrolysate of microwave-treated wheat straw by statistical optimization and mass balance analysis of bioconversion process. Biofuels, 1–8.
|
Patel, A.K., Singhania, R.R., Sim, S.J., Pandey, A., 2019b. Thermostable cellulases: current status and perspectives. Bioresour. Technol. 279, 385–392. doi: 10.1016/j.biortech.2019.01.049
|
Patel, H., Divecha, J., Shah, A., 2017. Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. J. Taiwan Inst. Chem. Eng. 71, 298–306. doi: 10.1016/j.jtice.2016.12.032
|
Patel, M., Ou, M., Ingram, L.O., Shanmugam, K.T., 2004. Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol. Lett. 26, 865–868. doi: 10.1023/B:bile.0000025893.27700.5c
|
Patiño, M.A., Ortiz, J.P., Velásquez, M., Stambuk, B.U., 2019. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast 36, 541–556.
|
Pedraza, L., Toribio, H., Romo, R., Arreola, S., Guevana, M., 2014. Prebiotic activity of xylooligosaccharides from corncob. Journal of Chemical, Biological and Physical Sciences 4, 1–5. doi: 10.1007%2Fs10068-014-0207-0
|
Penner, M.H., Liaw, E.T., 1994. Kinetic Consequences of High Ratios of Substrate to Enzyme Saccharification Systems Based On Trichoderma cellulase. ACS SymposiumSeries. American Chemical Society, Washington, DC, pp. 363–371.
|
PHARMACOMPASS. Available at: http://www.pharmacompass.com. Accessed 30 June 2019.
|
Pickett, J., Anderson, D., Bowles, D., Bridgwater, T., Jarvis, P., Mortimer, N., Poliakoff, M., Woods, J., 2008. Sustainable Biofuels: Prospects and Challenges. UK. London: The Royal Society.
|
Prasad, S., Singh, A., Joshi, H.C., 2007. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39. doi: 10.1016/j.resconrec.2006.05.007
|
Purohit, A., Rai, S.K., Chownk, M., Sangwan, R.S., Yadav, S.K., 2017. Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass. Bioresour. Technol. 244, 793–799. doi: 10.1016/j.biortech.2017.08.034
|
Rajan, K., Carrier, D.J., 2014. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62, 222–227. doi: 10.1016/j.biombioe.2014.01.013
|
Raman, J.K., Gnansounou, E., 2015. Furfural production from empty fruit bunch—A biorefinery approach. Ind. Crop. Prod. 69, 371–377. doi: 10.1016/j.indcrop.2015.02.063
|
Reddy, S.S., Krishnan, C., 2016. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes. Prep. Biochem. Biotechnol. 46, 49–55. doi: 10.1080/10826068.2014.970694
|
Renewable Fuel Association, 2020. Available at: http://www.ethanolrfa.com. Accessed 4 April 2020.
|
Research and Markets, 2019. Global Polyhydroxyalkanoate (PHA) Market Analysis & Trends Industry Forecast to 2025. Available at: https://www.researchandmarkets.com/reports/4375504/global-polyhydroxyalkanoate-pha-market-analysis. Accessed 30 June 2019.
|
Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P.F., Mohammadi, A.A., 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199, 117457. doi: 10.1016/j.energy.2020.117457
|
Rodrigues, R.C.L.B., Kenealy, W.R., Jeffries, T.W., 2011. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biotechnol. 38, 1649–1655. doi: 10.1007/s10295-011-0953-4
|
Rostagno, M.A., Prado, J.M., Mudhoo, A., Santos, D.T., Forster-Carneiro, T., Meireles, M.A.A., 2015. Subcritical and supercritical technology for the production of second generation bioethanol. Crit. Rev. Biotechnol. 35, 302–312. doi: 10.3109/07388551.2013.843155
|
Ruohonen, L., Aristidou, A., Frey, A.D., Penttilä, M., Kallio, P.T., 2006. Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions. Enzym. Microb. Technol. 39, 6–14. doi: 10.1016/j.enzmictec.2005.06.024
|
Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5, 337–353. doi: 10.1007/s13205-014-0246-5
|
Sánchez, Ó. J., Montoya, S., 2013. Production of bioethanol from biomass: an overview. Biofuel Technologies. Springer, Berlin, Heidelberg, pp. 397–441.
|
Sanford, K., Chotani, G., Danielson, N., Zahn, J.A., 2016. Scaling up of renewable chemicals. Curr. Opin. Biotechnol. 38, 112–122. doi: 10.1016/j.copbio.2016.01.008
|
Santos, A., San Mauro, M., Díaz, D.M., 2006. Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol. 23, 498–503. doi: 10.1016/j.fm.2005.07.004
|
Sarsaiya, S., Jain, A., Kumar Awasthi, S., Duan, Y.M., Kumar Awasthi, M., Shi, J.S., 2019. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour. Technol. 291, 121905. doi: 10.1016/j.biortech.2019.121905
|
Saxena, R.C., Adhikari, D.K., Goyal, H.B., 2009. Biomass-based energy fuel through biochemical routes: a review. Renew. Sustain. Energy Rev. 13, 167–178. doi: 10.1016/j.rser.2007.07.011
|
Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908. doi: 10.1039/c7cs00566k
|
Seesuriyachan, P., Kawee-Ai, A., Chaiyaso, T., 2017. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. Bioresour. Technol. 241, 537–544. doi: 10.1016/j.biortech.2017.05.193
|
Shah, A., Patel, H., Narra, M., 2017. Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metabolites. Springer InternationalPublishing, Cham, pp. 349–393.
|
Sheridan, C., 2013. Big oil turns on biofuels. Nat. Biotechnol. 31, 870–873. doi: 10.1038/nbt.2704
|
Sindhu, R., Silviya, N., Binod, P., Pandey, A., 2013. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 78, 67–72. doi: 10.1016/j.bej.2012.12.015
|
Singh, J.K., Vyas, P., Dubey, A., Upadhyaya, C.P., Kothari, R., Tyagi, V., Kumar, A., 2018. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Front. Biosci 10, 10.2741. http://europepmc.org/abstract/MED/29772563
|
Siqueira, J.G.W., Rodrigues, C., Vandenberghe, L.P.D.S., Woiciechowski, A.L., Soccol, C.R., 2020. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132, 105419. doi: 10.1016/j.biombioe.2019.105419
|
Smit, A.T., Huijgen, W.J.J., 2017. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw. Bioresour. Technol. 243, 994–999. doi: 10.1016/j.biortech.2017.07.072
|
Smuga-Kogut, M., Walendzik, B., Szymanowska-Powalowska, D., Kobus-Cisowska, J., Wojdalski, J., Wieczorek, M., Cielecka-Piontek, J., 2019. Comparison of bioethanol preparation from Triticale straw using the ionic liquid and sulfate methods. Energies 12, 1155. doi: 10.3390/en12061155
|
Snell, K.D., Peoples, O.P., 2009. PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels, Bioprod. Bioref. 3, 456–467. doi: 10.1002/bbb.161
|
Song, S., Fung Kin Yuen, V., Di, L., Sun, Q., Zhou, K., Yan, N., 2020. Integrating biomass into the organonitrogen chemical supply chain: production of pyrrole and d-proline from furfural. Angew. Chem. Int. Ed. Engl. 59, 19846–19850. doi: 10.1002/anie.202006315
|
Sreemahadevan, S., Roychoudhury, P.K., Thankamani, V., Ahammad, S.Z., 2018. Biological pretreatment of rice straw using an alkalophilic fungus MVI. 2011 for enhanced enzymatic hydrolysis yield. Sustain. Energy Technol. Assessments 30, 304–313. doi: 10.1016/j.seta.2018.10.015
|
Sukri, S.S.M., Mimi Sakinah, A.M., 2018. Production of high commercial value xylooligosaccharides from meranti wood sawdust using immobilised xylanase. Appl. Biochem. Biotechnol. 184, 278–290. doi: 10.1007/s12010-017-2542-0
|
Sukumaran, R.K., Mathew, A.K., Kiran Kumar, M., Abraham, A., Chistopher, M., Sankar, M., 2017. First- and second-generation ethanol in India: a comprehensiveoverview on feedstock availability, composition, and potential conversion yields. Sustainable Biofuels Development in India. Springer International Publishing, Cham, pp. 223–246.
|
Sun, S.N., Sun, S.L., Cao, X.F., Sun, R.C., 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199, 49–58. doi: 10.1016/j.biortech.2015.08.061
|
Thomsen, M.H., 2005. Complex media from processing of agricultural crops for microbial fermentation. Appl. Microbiol. Biotechnol. 68, 598–606. doi: 10.1007/s00253-005-0056-0
|
Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., Serrano, D.P., 2017. Valorization of steam-exploded wheat straw through a biorefinery approach: bioethanol and bio-oil co-production. Fuel 199, 403–412. doi: 10.1016/j.fuel.2017.03.006
|
Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., Pugazhendhi, A., 2020. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242, 125080. doi: 10.1016/j.chemosphere.2019.125080
|
Travaini, R., Martín-Juárez, J., Lorenzo-Hernando, A., Bolado-Rodríguez, S., 2016. Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour. Technol. 199, 2–12. doi: 10.1016/j.biortech.2015.08.143
|
Unrean, P., Ketsub, N., 2018. Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind. Crop. Prod. 123, 238–246. doi: 10.1016/j.indcrop.2018.06.071
|
Valdivia, M., Galan, J.L., Laffarga, J., Ramos, J.L., 2016. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb. Biotechnol. 9, 585–594. doi: 10.1111/1751-7915.12387
|
Valenzuela, S.V., Ferreres, G., Margalef, G., Pastor, F.I.J., 2017. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Carbohydr. Res. 448, 205–211. doi: 10.1016/j.carres.2017.02.004
|
Vázquez, M.J., Alonso, J.L., Domı́nguez, H., Parajó, J.C., 2000. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393. doi: 10.1016/S0924-2244(01)00031-0
|
Verardi, A., Lopresto, C.G., Blasi, A., Chakraborty, S., Calabrò, V., 2020. Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. Lignocellulosic Biomassto Liquid Biofuels. Elsevier, Amsterdam, pp. 67–125.
|
Wischral, D., Arias, J.M., Modesto, L.F., de França Passos, D., Pereira, N. Jr, 2019. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: integrating xylose and glucose fermentation. Biotechnol. Prog. 35, e2718. doi: 10.1002/btpr.2718
|
Wong, S.S., Shu, R., Zhang, J., Liu, H., Yan, N., 2020. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 49, 5510–5560. doi: 10.1039/d0cs00134a
|
Xiu, S.N., Shahbazi, A., 2012. Bio-oil production and upgrading research: a review. Renew. Sustain. Energy Rev. 16, 4406–4414. doi: 10.1016/j.rser.2012.04.028
|
Yamakawa, C.K., Qin, F., Mussatto, S.I., 2018. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119, 54–60. doi: 10.1016/j.biombioe.2018.09.007
|
Yang, B., Wyman, C.E., 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Bioref. 2, 26–40. doi: 10.1002/bbb.49
|
Yang, Y., Hu, C.W., Abu-Omar, M.M., 2012. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem 5, 405–410. doi: 10.1002/cssc.201100688
|
Yi, J., He, T., Jiang, Z.C., Li, J.M., Hu, C.W., 2013. AlCl3 catalyzed conversion of hemicellulose in corn stover. Chin. J. Catal. 34, 2146–2152. doi: 10.1016/S1872-2067(12)60718-9
|
Yu, J., Stahl, H., 2008. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 99, 8042–8048. doi: 10.1016/j.biortech.2008.03.071
|
Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G., 2016. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 66, 751–774. doi: 10.1016/j.rser.2016.08.038
|
Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: current perspectives and technological progress. Renew. Sustain. Energy Rev. 71, 475–501. doi: 10.1016/j.rser.2016.12.076
|
Zhang, X., Tu, M.B., Paice, M.G., 2011. Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenergy Res. 4, 246–257. doi: 10.1007/s12155-011-9147-1
|
Zhang, Y.H.P., 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35, 367–375. doi: 10.1007/s10295-007-0293-6
|
Zhao, C., Ding, W.M., Chen, F., Cheng, C., Shao, Q.J., 2014. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour. Technol. 155, 34–40. doi: 10.1016/j.biortech.2013.12.091
|
Zhao, Y.L., Dolat, A., Steinberger, Y., Wang, X., Osman, A., Xie, G.H., 2009. Biomass yield and changes in chemical composition of sweet Sorghum cultivars grown for biofuel. Field Crop. Res. 111, 55–64. doi: 10.1016/j.fcr.2008.10.006
|
Zhao, Z., Li, N., Bhutto, A.W., Abdeltawab, A.A., Al-Deyab, S.S., Liu, G.Q., Chen, X.C., Yu, G.R., 2016. N-methyl-2-pyrrolidonium-based Brönsted-Lewis acidic ionic liquids as catalysts for the hydrolysis of cellulose. Sci. China Chem. 59, 564–570. doi: 10.1007/s11426-016-5592-1
|
Zheng, Y., Shi, J., Tu, M.B., Cheng, Y.S., 2017. Principles and development of lignocellulosic biomass pretreatment for biofuels. Advances in Bioenergy. Elsevier, Amsterdam, pp. 1–68.
|
Zhuang, X.S., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X.S., Zhou, G.X., Yuan, Z.H., 2016. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 199, 68–75. doi: 10.1016/j.biortech.2015.08.051
|