Volume 6 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Amisha Patel, Amita R. Shah. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 108-128. doi: 10.1016/j.jobab.2021.02.001
Citation: Amisha Patel, Amita R. Shah. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 108-128. doi: 10.1016/j.jobab.2021.02.001

Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products

doi: 10.1016/j.jobab.2021.02.001
More Information
  • Corresponding author: Professor in Microbiology, Post Graduate Department of Biosciences, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol-388315 Gujrat, India. E-mail address: arshah02@yahoo.com (Amita R. Shah)
  • Received Date: 2020-09-18
  • Accepted Date: 2020-11-23
  • Rev Recd Date: 2020-11-15
  • Available Online: 2021-02-05
  • Publish Date: 2021-05-01
  • An increasing demand for energy and depleting petroleum sources has elevated the need for producing alternative renewable resources. Owing to the prominence of lignocellulosic biomass as bio-renewable and the most abundant resource on Earth, this critical review provides perceptions into the potential of lignocellulosic biomass for production of second generation (2G) ethanol and value added products in a biorefinery manner. The efficient utilization of all three components of lignocellulosic biomass (i.e., cellulose, hemicellulose and lignin) would play a significant role in the economic viability of cellulosic ethanol. The pretreatment method is the key to the success of bioconversion processes and greatly influences the economics of biorefinery process. Biotechnology tools and process engineering play pivotal roles in development of integrated processes for production of biofuels, biochemicals and biomaterials from lignocellulosic biomass. Although, lignocellulosic biorefinery has ample scopes, commercial production of biofuels and chemicals is still challenging. In this context, this review entails concept of lignocellulose biorefinery, latest developments in 2G ethanol production process, importance and market potential of 2G ethanol as renewable fuel and value added chemicals, integration of processes, challenges for integrated production of fuel together with value added chemicals and future directions.

     

  • loading
  • Abdel-Rahman, M.A., Sonomoto, K., 2016. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 236, 176–192. doi: 10.1016/j.jbiotec.2016.08.008
    Ahmad, E., Pant, K.K., 2018. Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. Waste Biorefinery. Elsevier, Amsterdam, pp. 409–444.
    Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R., 2009. Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87, 1171–1183. doi: 10.1016/j.cherd.2009.07.006
    Álvarez, C., Sáez, F., González, A., Ballesteros, I., Oliva, J.M., Negro, M.J., 2018. Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw. Holzforschung 73, 35–44. doi: 10.1515/hf-2018-0101
    Alves de Oliveira, R., Schneider, R., Vaz Rossell, C.E., Maciel Filho, R., Venus, J., 2019. Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour. Technol. Rep. 6, 26–31. doi: 10.1016/j.biteb.2019.02.003
    Alves de Oliveira, R., Vaz Rossell, C.E., Venus, J., Cândida Rabelo, S., Maciel Filho, R., 2018. Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. J. Biotechnol. 278, 56–63. doi: 10.1016/j.jbiotec.2018.05.006
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861. doi: 10.1016/j.biortech.2009.11.093
    Amorim, C., Silvério, S.C., Prather, K.L.J., Rodrigues, L.R., 2019. From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 37, 107397. doi: 10.1016/j.biotechadv.2019.05.003
    Aragon, C.C., Santos, A.F., Ruiz-Matute, A.I., Corzo, N., Guisan, J.M., Monti, R., Mateo, C., 2013. Continuous production of xylooligosaccharides in a packed bed reactor with immobilized-stabilized biocatalysts of xylanase from Aspergillus versicolor. J. Mol. Catal. B: Enzym. 98, 8–14. doi: 10.1016/j.molcatb.2013.09.017
    Arora, A., Priya, S., Sharma, P., Sharma, S., Nain, L., 2016. Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal. Agric. Biotechnol. 8, 66–72. doi: 10.1016/j.bcab.2016.08.006
    Arvaniti, E., Bjerre, A.B., Schmidt, J.E., 2012. Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 39, 94–105. doi: 10.1016/j.biombioe.2011.12.040
    Avanthi, A., Kumar, S., Sherpa, K.C., Banerjee, R., 2017. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels 8, 431–444. doi: 10.1080/17597269.2016.1249738
    Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., 2013. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523. doi: 10.1016/j.rser.2012.12.022
    Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R.A., 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod. Bioref. 4, 77–93. doi: 10.1002/bbb.188
    Baptista, S.L., Cunha, J.T., Romaní, A., Domingues, L., 2018. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresour. Technol. 267, 481–491. doi: 10.1016/j.biortech.2018.07.068
    Barakat, A., Mayer-Laigle, C., Solhy, A., Arancon, R.A.D., de Vries, H., Luque, R., 2014. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv. 4, 48109–48127. doi: 10.1039/C4RA07568D
    Barbosa, F.C., Silvello, M.A., Goldbeck, R., 2020. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol. Lett. 42, 875–884. doi: 10.1007/s10529-020-02875-4
    Barros-Rios, J., Romaní, A., Garrote, G., Ordas, B., 2015. Biomass, sugar, and bioethanol potential of sweet corn. GCB Bioenergy 7, 153–160. doi: 10.1111/gcbb.12136
    Bhatia, S.K., Gurav, R., Choi, T.R., Jung, H.R., Yang, S.Y., Moon, Y.M., Song, H.S., Jeon, J.M., Choi, K.Y., Yang, Y.H., 2019. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271, 306–315. doi: 10.1016/j.biortech.2018.09.122
    Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim, S., Yu, G.R., 2017. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122, 724–745. doi: 10.1016/j.energy.2017.01.005
    Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., Sun, R.C., 2014. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. 156, 7–13. doi: 10.1016/j.foodchem.2014.01.112
    Biswas, R., Uellendahl, H., Ahring, B.K., 2015. Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Res. 8, 1101–1116. doi: 10.1007/s12155-015-9590-5
    Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., Chaiyaso, T., 2018. An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 256, 399–407. doi: 10.1016/j.biortech.2018.02.004
    Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550–583. doi: 10.1039/c2gc36364j
    Buruiana, C.T., Vizireanu, C., Garrote, G., Parajó, J.C., 2014. Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crop. Prod. 54, 32–39. doi: 10.1016/j.indcrop.2014.01.003
    Cai, C.M., Zhang, T.Y., Kumar, R., Wyman, C.E., 2013. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 15, 3140–3145. doi: 10.1039/c3gc41214h
    Carvalho, A.F.A., Neto, P.D.O., da Silva, D.F., Pastore, G.M., 2013. Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 51, 75–85. doi: 10.1016/j.foodres.2012.11.021
    Carvalho, A.V., da Costa Lopes, A.M., Bogel-Łukasik, R., 2015. Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction. RSC Adv. 5, 47153–47164. doi: 10.1039/C5RA07159C
    Ceccato-Antonini, S.R., Codato, C.B., Martini, C., Bastos, R.G., Tauk-Tornisielo, S.M., 2017. Yeast for pentose fermentation: isolation, screening, performance, manipulation, and prospects. Advances of Basic Science For Second Generation Bioethanol from Sugarcane. Springer International Publishing, Cham, pp. 133–157.
    Champreda, V., Mhuantong, W., Lekakarn, H., Bunterngsook, B., Kanokratana, P., Zhao, X.Q., Zhang, F., Inoue, H., Fujii, T., Eurwilaichitr, L., 2019. Designing cellulolytic enzyme systems for biorefinery: from nature to application. J. Biosci. Bioeng. 128, 637–654. doi: 10.1016/j.jbiosc.2019.05.007
    Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381. doi: 10.1016/j.biortech.2018.06.004
    Chandel, A.K., Singh, O.V., Chandrasekhar, G., Rao, L.V., Narasu, M.L., 2010. Key drivers influencing the commercialization of ethanol-based biorefineries. J. Commer. Biotechnol. 16, 239–257. doi: 10.1057/jcb.2010.5
    Chapla, D., Dholakiya, S., Madamwar, D., Shah, A., 2013. Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod. Process. 91, 682–692. doi: 10.1016/j.fbp.2013.08.005
    Chapla, D., Pandit, P., Shah, A., 2012. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol. 115, 215–221. doi: 10.1016/j.biortech.2011.10.083
    Chen, H.Z., Fu, X.G., 2016. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 57, 468–478. doi: 10.1016/j.rser.2015.12.069
    Chu, B.C.H., Lee, H., 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25, 425–441. doi: 10.1016/j.biotechadv.2007.04.001
    Chukwuma, O.B., Rafatullah, M., Tajarudin, H.A., Ismail, N., 2020. Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 12, 7282. doi: 10.3390/su12187282
    Chung, Y.C., Hsu, C.K., Ko, C.Y., Chan, Y.C., 2007. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr. Res. 27, 756–761. doi: 10.1016/j.nutres.2007.09.014
    Clark, J.H., Deswarte, F.E.I., 2008. The biorefinery concept-an integrated approach. Introduction to Chemicals from Biomass. John Wiley & Sons, Ltd., Chichester, UK, pp. 1–20.
    Clark, J.H., Luque, R., Matharu, A.S., 2012. Green chemistry, biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng. 3, 183–207. doi: 10.1146/annurev-chembioeng-062011-081014
    Cortez, D.V., Mussatto, S.I., Roberto, I.C., 2016. Improvement on d-xylose to xylitol biotransformation by Candida guilliermondii using cells permeabilized with triton X-100 and selected process conditions. Appl. Biochem. Biotechnol. 180, 969–979. doi: 10.1007/s12010-016-2146-0
    Courtade, G., Le, S.B., Sætrom, G.I., Brautaset, T., Aachmann, F.L., 2017. A novel expression system for lytic polysaccharide monooxygenases. Carbohydr. Res. 448, 212–219. doi: 10.1016/j.carres.2017.02.003
    Cubas-Cano, E., González-Fernández, C., Ballesteros, M., Tomás-Pejó, E., 2019. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: anaerobiosis as a key factor. Biotechnol. Prog. 35, e2739. doi: 10.1002/btpr.2739
    da Costa Sousa, L., Chundawat, S.P., Balan, V., Dale, B.E., 2009. 'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20, 339–347. doi: 10.1016/j.copbio.2009.05.003
    da Silva Menezes, B., Rossi, D.M., Squina, F., Ayub, M.A.Z., 2018. Xylooligosaccharides production by fungi cultivations in rice husk and their application as substrate for lactic acid bacteria growth. Bioresour. Technol. Rep. 2, 100–106. doi: 10.1016/j.biteb.2018.05.004
    Dasgupta, D., Junghare, V., Nautiyal, A.K., Jana, A., Hazra, S., Ghosh, D., 2019. Xylitol production from lignocellulosic pentosans: a rational strain engineering approach toward a multiproduct biorefinery. J. Agric. Food Chem. 67, 1173–1186. doi: 10.1021/acs.jafc.8b05509
    Dietrich, K., Dumont, M.J., del Rio, L.F., Orsat, V., 2017. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 9, 58–70. doi: 10.1016/j.spc.2016.09.001
    Dimos, K., Paschos, T., Louloudi, A., Kalogiannis, K.G., Lappas, A.A., Papayannakos, N., Kekos, D., Mamma, D., 2019. Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5, 5. doi: 10.3390/fermentation5010005
    Dupont Accellerase®, 2019. Cellulase enzyme complex for lignocellulosic biomass hydrolysis. Available at: http://www.accellerase.dupont.com. Accessed 1 July 2019.
    Fache, M., Boutevin, B., Caillol, S., 2016. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46. doi: 10.1021/acssuschemeng.5b01344
    Faryar, R., Linares-Pastén, J.A., Immerzeel, P., Mamo, G., Andersson, M., Stålbrand, H., Mattiasson, B., Karlsson, E.N., 2015. Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod. Process. 93, 1–10. doi: 10.1016/j.fbp.2014.11.004
    Fernando, S., Adhikari, S., Chandrapal, C., Murali, N., 2006. Biorefineries: current status, challenges, and future direction. Energy Fuels 20, 1727–1737. doi: 10.1021/ef060097w
    Finegold, S.M., Li, Z., Summanen, P.H., Downes, J., Thames, G., Corbett, K., Dowd, S., Krak, M., Heber, D., 2014. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 5, 436–445. doi: 10.1039/c3fo60348b
    Garde, A., Jonsson, G., Schmidt, A.S., Ahring, B.K., 2002. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour. Technol. 81, 217–223. doi: 10.1016/S0960-8524(01)00135-3
    Ghosh, D., Dasgupta, D., Agrawal, D., Kaul, S., Adhikari, D.K., Kurmi, A.K., Arya, P.K., Bangwal, D., Negi, M.S., 2015. Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energy Fuels 29, 3149–3157. doi: 10.1021/acs.energyfuels.5b00144
    Gibson, G.R., Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412. doi: 10.1093/jn/125.6.1401
    Grand View Research, 2015. Furfural Market Size Growth & Value, Industry Research Report, 2020. Grand View Research, Inc., U. S. Available at: https://www.grandviewresearch.com/industry-analysis/furfural-market. Accessed 4 April 2020.
    Grand View Research, 2017a. Vanillin Market Size Worth $724.5 Million By 2025, Growth Rate: 7.0%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-vanillin-market. Accessed 4 April 2020.
    Grand View Research, 2017b. Xylitol Market Size Worth $1.37 Billion By 2025, Growth Rate: 6.6%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-xylitol-market. Accessed 4 April 2020.
    Grand View Research, 2019a. Lactic Acid Market Size & Share, Global Industry Report, 2019-2025. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market. Accessed 4 April 2020.
    Grand View Research, 2019b. Lactic Acid Market Size Worth $8.77 Billion By 2025, CAGR: 18.7%. Grand View Research, Inc., U.S. Available at: https://www.grandviewresearch.com/press-release/global-lactic-acid-and-poly-lactic-acid-market1/. Accessed 4 April 2020.
    Gurgel, L.V.A., Pimenta, M.T.B., Curvelo, A.A.D.S., 2016. Ethanol-water organosolv delignification of liquid hot water (LHW) pretreated sugarcane bagasse enhanced by high-pressure carbon dioxide (HP-CO2). Ind. Crop. Prod. 94, 942–950. doi: 10.1016/j.indcrop.2016.10.003
    Gusakov, A.V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N., Burlingame, R., Emalfarb, M., Baez, M., Sinitsyn, A.P., 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97, 1028–1038. doi: 10.1002/bit.21329
    Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., Sawayama, S., 2009. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour. Technol. 100, 2706–2711. doi: 10.1016/j.biortech.2008.12.057
    Hoyer, K., Galbe, M., Zacchi, G., 2013. The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process. Biochem. 48, 289–293. doi: 10.1016/j.procbio.2012.12.020
    Hsu, C.K., Liao, J.W., Chung, Y.C., Hsieh, C.P., Chan, Y.C., 2004. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 134, 1523–1528. doi: 10.1093/jn/134.6.1523
    Irmak, S., Canisag, H., Vokoun, C., Meryemoglu, B., 2017. Xylitol production from lignocellulosics: are corn biomass residues good candidates?Biocatal. Agric. Biotechnol. 11, 220–223. doi: 10.1016/j.bcab.2017.07.010
    Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559. doi: 10.1039/C5PY00263J
    Jagtap, S., Deshmukh, R.A., Menon, S., Das, S., 2017. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour. Technol. 245, 283–288. doi: 10.1016/j.biortech.2017.08.174
    Jain, I., Kumar, V., Satyanarayana, T., 2015. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Biol. 53, 131–142. http://europepmc.org/abstract/MED/25872243
    Jaisamut, K., Paulová, L., Patáková, P., Kotúčová, S., Rychtera, M., 2016. Effect of sodium sulfite on acid pretreatment of wheat straw with respect to its final conversion to ethanol. Biomass Bioenergy 95, 1–7. doi: 10.1016/j.biombioe.2016.08.022
    Jin, Y.S., Jeffries, T.W., 2004. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng. 6, 229–238. doi: 10.1016/j.ymben.2003.11.006
    Jönsson, L.J., Martín, C., 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112. doi: 10.1016/j.biortech.2015.10.009
    Junqueira, T.L., Cavalett, O., Bonomi, A., 2016. The virtual sugarcane biorefinery—A simulation tool to support public policies formulation in bioenergy. Ind. Biotechnol. 12, 62–67. doi: 10.1089/ind.2015.0015
    Kamm, B., Kamm, M., 2004. Principles of biorefineries. Appl. Microbiol. Biotechnol. 64, 137–145. doi: 10.1007/s00253-003-1537-7
    Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562–2568. doi: 10.1016/j.biortech.2008.11.011
    Kar, Y., Deveci, H., 2006. Importance of P-series fuels for flexible-fuel vehicles (FFVs) and alternative fuels. Energy Sources Part A: Recover. Util. Environ. Eff. 28, 909–921. doi: 10.1080/00908310600718841
    Katsimpouras, C., Zacharopoulou, M., Matsakas, L., Rova, U., Christakopoulos, P., Topakas, E., 2017. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresour. Technol. 244, 1129–1136. doi: 10.1016/j.biortech.2017.08.112
    Kim, M., Day, D.F., 2011. Composition of sugar cane, energy cane, and sweet Sorghum suitable for ethanol production at Louisiana sugar Mills. J. Ind. Microbiol. Biotechnol. 38, 803–807. doi: 10.1007/s10295-010-0812-8
    Kiso, Y., Iino, T., Kato, S., 2005. Remedies For Hyperammonemia. Suntory Holdings Ltd., United States.
    Knauf, M., Moniruzzaman, M., 2004. Lignocellulosic biomass processing: a perspective. Int. Sugar J. 106, 147–150. http://www.cabdirect.org/abstracts/20043043925.html
    Ko, C.H., Chiang, P.N., Chiu, P.C., Liu, C.C., Yang, C.L., Shiau, I.L., 2008. Integrated xylitol production by fermentation of hardwood wastes. J. Chem. Technol. Biotechnol. 83, 534–540. doi: 10.1002/jctb.1828
    Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M., 2017. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55. doi: 10.3390/bioengineering4020055
    Kreith, F., Krumdieck, S., 2013. Principles of Sustainable Energy Systems. CRC Press, Boca Raton.
    Kuglarz, M., Alvarado-Morales, M., Dąbkowska, K., Angelidaki, I., 2018. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 265, 191–199. doi: 10.1016/j.biortech.2018.05.099
    Kuglarz, M., Alvarado-Morales, M., Karakashev, D., Angelidaki, I., 2016. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour. Technol. 200, 639–647. doi: 10.1016/j.biortech.2015.10.081
    Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., Verma, P., 2020. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244. doi: 10.1016/j.fuproc.2019.106244
    Kumar, V., Satyanarayana, T., 2015. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris. Bioresour. Technol. 179, 382–389. doi: 10.1016/j.biortech.2014.12.049
    Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L., 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101, 1036–1043. doi: 10.1016/j.biortech.2009.08.091
    Li, C., Wang, L., Chen, Z.X., Li, Y.F., Wang, R., Luo, X.H., Cai, G.L., Li, Y.N., Yu, Q.S., Lu, J., 2015. Ozonolysis pretreatment of maize stover: the interactive effect of sample particle size and moisture on ozonolysis process. Bioresour. Technol. 183, 240–247. doi: 10.1016/j.biortech.2015.01.042
    Li, H.Y., Wang, B., Wen, J.L., Cao, X.F., Sun, S.N., Sun, R.C., 2018. Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Convers. Manag. 155, 58–67. doi: 10.1016/j.enconman.2017.10.089
    Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M., Li, L.Z., 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570–3575. doi: 10.1016/j.biortech.2009.02.040
    Limayem, A., Ricke, S.C., 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38, 449–467. doi: 10.1016/j.pecs.2012.03.002
    Lin, C., Luque, R., 2014. Renewable Resources For Biorefineries. Royal Society of Chemistry, Cambridge.
    Liu, C.G., Xiao, Y., Xia, X.X., Zhao, X.Q., Peng, L.C., Srinophakun, P., Bai, F.W., 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37, 491–504. doi: 10.1007/s00359-019-01336-2
    Liu, X.Q., Liu, Y., Jiang, Z.Q., Liu, H.J., Yang, S.Q., Yan, Q.J., 2018. Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chem. 264, 310–318. doi: 10.1016/j.foodchem.2018.05.023
    Liu, Y.J., Li, B., Feng, Y.G., Cui, Q., 2020. Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 40, 107535. doi: 10.1016/j.biotechadv.2020.107535
    Liu, Z., Li, L.F., Liu, C., Xu, A.R., 2018b. Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour. Technol. 260, 417–420. doi: 10.1016/j.biortech.2018.03.117
    Lopes, A.M., Ferreira Filho, E.X., Moreira, L.R.S., 2018. An update on enzymatic cocktails for lignocellulose breakdown. J. Appl. Microbiol. 125, 632–645. doi: 10.1111/jam.13923
    Lopes, M.S.G., Gomez, J.G.C., Taciro, M.K., Mendonça, T.T., Silva, L.F., 2014. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J. Ind. Microbiol. Biotechnol. 41, 1353–1363. doi: 10.1007/s10295-014-1485-5
    López-Linares, J.C., Romero, I., Cara, C., Castro, E., Mussatto, S.I., 2018. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247, 736–743. doi: 10.1016/j.biortech.2017.09.139
    López-Linares, J.C., Romero, I., Cara, C., Ruiz, E., Moya, M., Castro, E., 2014. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122, 112–118. doi: 10.1016/j.fuel.2014.01.024
    Lynd, L.R., Van Zyl, W.H., McBride, J.E., Laser, M., 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583. doi: 10.1016/j.copbio.2005.08.009
    Mano, M.C.R., Neri-Numa, I.A., Silva, J.B., Paulino, B.N., Pessoa, M.G., Pastore, G.M., 2018. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 102, 17–37. doi: 10.1007/s00253-017-8564-2
    Market Watch, 2019. At 4.1% CAGR, Xylooligosaccharides (XOS) Market Size will reach 130 Million USD by 2025. Market Study Report LLC. Available at: https://www.marketwatch.com/press-release. Accessed 30 June 2019.
    Martín, C., Thomsen, A.B., 2007. Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 82, 174–181. doi: 10.1002/jctb.1648
    Martin, M.A., 2010. First generation biofuels compete. N Biotechnol 27, 596–608. doi: 10.1016/j.nbt.2010.06.010
    Masran, R., Bahrin, E.K., Ibrahim, M.F., Phang, L.Y., Abd-Aziz, S., 2020. Simultaneous pretreatment and saccharification of oil palm empty fruit bunch using laccase-cellulase cocktail. Biocatal. Agric. Biotechnol. 29, 101824. doi: 10.1016/j.bcab.2020.101824
    Mathew, A.K., Abraham, A., Mallapureddy, K.K., Sukumaran, R.K., 2018. Lignocellulosic biorefinery wastes, or resources? Waste Biorefinery. Elsevier, Amsterdam, pp. 267–297.
    Maurya, D.P., Singla, A., Negi, S., 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3Biotech 5, 597–609. doi: 10.1007/s13205-015-0279-4
    McCarthy, J.E., Tiemann, M., 2006. MTBE in gasoline: clean air and drinking water issues.
    Menon, V., Rao, M.L., 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550. doi: 10.1016/j.pecs.2012.02.002
    Messaoudi, Y., Smichi, N., Bouachir, F., Gargouri, M., 2019. Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste Biomass Valorization 10, 357–367. doi: 10.1007/s12649-017-0062-3
    Mhetras, N., Mapre, V., Gokhale, D., 2019. Xylooligosaccharides (XOS) as emerging prebiotics: its production from lignocellulosic material. Adv. Microbiol. 9, 14–20. doi: 10.4236/aim.2019.91002
    Ministry of Petroleum and Natural Gas, 2019. The Gazette of India, Pradhan Mantri Jaiv Indhan- Vatavaran Anukool fasal awashesh Nivaran (JI-VAN) Yojana, New Delhi. Available at: http://egazette.nic.in. Accessed 16 May 2019.
    Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N., 2015. Xylitol biological production: a review of recent studies. Food Rev. Int. 31, 74–89. doi: 10.1080/87559129.2014.961077
    Moldes, A.B., Torrado, A., Converti, A., Dominguez, J.M., 2006. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Appl. Biochem. Biotechnol. 135, 219–227. doi: 10.1385/ABAB:135:3:219
    Montipó, S., Ballesteros, I., Fontana, R.C., Liu, S.Q., Martins, A.F., Ballesteros, M., Camassola, M., 2018. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. Bioresour. Technol. 249, 1017–1024. doi: 10.1016/j.biortech.2017.11.001
    Morais Junior, W.G., Pacheco, T.F., Trichez, D., Almeida, J.R.M., Gonçalves, S.B., 2019. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36, 349–361. doi: 10.1002/yea.3394
    Mordor Intelligence, 2019. Polylactic Acid (PLA) Market—Segmented by Raw Material, Form, Application, and Geography—Growth, Trends and Forecast (2019–2024), India. Available at: https://www.mordorintelligence.com/industry-reports/polylactic-acid-market. Accessed 30 June 2019.
    Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M.C., Esteves, M.P., 2007. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT-Food Sci. Technol. 40, 963–972. doi: 10.1016/j.lwt.2006.07.013
    Moure, A., Gullón, P., Domínguez, H., Parajó, J.C., 2006. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process. Biochem. 41, 1913–1923. doi: 10.1016/j.procbio.2006.05.011
    Mussatto, S.I., 2012. Application of xylitol in food formulations and benefits for health. d-Xylitol. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 309–323.
    Nosratpour, M.J., Karimi, K., Sadeghi, M., 2018. Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J. Environ. Manage. 226, 329–339. doi: 10.1016/j.jenvman.2018.08.058
    Novozyme, 2019. Available at: http://www.novozyme.com. Accessed 1 July 2019.
    Oh, Y.K., Hwang, K.R., Kim, C., Kim, J.R., Lee, J.S., 2018. Recent developments and key barriers to advanced biofuels: a short review. Bioresour. Technol. 257, 320–333. doi: 10.1016/j.biortech.2018.02.089
    Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I., Chamorro, M. Á., Sáez, F., Ballesteros, M., Moreno, A.D., 2017. A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3, 15. doi: 10.3390/fermentation3020015
    Palframan, R.J., Gibson, G.R., Rastall, R.A., 2003. Carbohydrate preferences of bifidobacterium species isolated from the human gut. Curr. Issues Intestinal Microbiol. 4, 71–75. http://www.ncbi.nlm.nih.gov/pubmed/14503691
    Palonen, H., Thomsen, A.B., Tenkanen, M., Schmidt, A.S., Viikari, L., 2004. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol. 117, 1–17. doi: 10.1385/ABAB:117:1:01
    Pan, W.Y., Perrotta, J.A., Stipanovic, A.J., Nomura, C.T., Nakas, J.P., 2012. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J. Ind. Microbiol. Biotechnol. 39, 459–469. doi: 10.1007/s10295-011-1040-6
    Park, J., Jones, B., Koo, B., Chen, X.W., Tucker, M., Yu, J.H., Pschorn, T., Venditti, R., Park, S., 2016. Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour. Technol. 199, 59–67. doi: 10.1016/j.biortech.2015.08.059
    Patel, A., Patel, H., Divecha, J., Shah, A.R., 2019a. Enhanced production of ethanol from enzymatic hydrolysate of microwave-treated wheat straw by statistical optimization and mass balance analysis of bioconversion process. Biofuels, 1–8.
    Patel, A.K., Singhania, R.R., Sim, S.J., Pandey, A., 2019b. Thermostable cellulases: current status and perspectives. Bioresour. Technol. 279, 385–392. doi: 10.1016/j.biortech.2019.01.049
    Patel, H., Divecha, J., Shah, A., 2017. Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. J. Taiwan Inst. Chem. Eng. 71, 298–306. doi: 10.1016/j.jtice.2016.12.032
    Patel, M., Ou, M., Ingram, L.O., Shanmugam, K.T., 2004. Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol. Lett. 26, 865–868. doi: 10.1023/B:bile.0000025893.27700.5c
    Patiño, M.A., Ortiz, J.P., Velásquez, M., Stambuk, B.U., 2019. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast 36, 541–556.
    Pedraza, L., Toribio, H., Romo, R., Arreola, S., Guevana, M., 2014. Prebiotic activity of xylooligosaccharides from corncob. Journal of Chemical, Biological and Physical Sciences 4, 1–5. doi: 10.1007%2Fs10068-014-0207-0
    Penner, M.H., Liaw, E.T., 1994. Kinetic Consequences of High Ratios of Substrate to Enzyme Saccharification Systems Based On Trichoderma cellulase. ACS SymposiumSeries. American Chemical Society, Washington, DC, pp. 363–371.
    PHARMACOMPASS. Available at: http://www.pharmacompass.com. Accessed 30 June 2019.
    Pickett, J., Anderson, D., Bowles, D., Bridgwater, T., Jarvis, P., Mortimer, N., Poliakoff, M., Woods, J., 2008. Sustainable Biofuels: Prospects and Challenges. UK. London: The Royal Society.
    Prasad, S., Singh, A., Joshi, H.C., 2007. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39. doi: 10.1016/j.resconrec.2006.05.007
    Purohit, A., Rai, S.K., Chownk, M., Sangwan, R.S., Yadav, S.K., 2017. Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass. Bioresour. Technol. 244, 793–799. doi: 10.1016/j.biortech.2017.08.034
    Rajan, K., Carrier, D.J., 2014. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62, 222–227. doi: 10.1016/j.biombioe.2014.01.013
    Raman, J.K., Gnansounou, E., 2015. Furfural production from empty fruit bunch—A biorefinery approach. Ind. Crop. Prod. 69, 371–377. doi: 10.1016/j.indcrop.2015.02.063
    Reddy, S.S., Krishnan, C., 2016. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes. Prep. Biochem. Biotechnol. 46, 49–55. doi: 10.1080/10826068.2014.970694
    Renewable Fuel Association, 2020. Available at: http://www.ethanolrfa.com. Accessed 4 April 2020.
    Research and Markets, 2019. Global Polyhydroxyalkanoate (PHA) Market Analysis & Trends Industry Forecast to 2025. Available at: https://www.researchandmarkets.com/reports/4375504/global-polyhydroxyalkanoate-pha-market-analysis. Accessed 30 June 2019.
    Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P.F., Mohammadi, A.A., 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199, 117457. doi: 10.1016/j.energy.2020.117457
    Rodrigues, R.C.L.B., Kenealy, W.R., Jeffries, T.W., 2011. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biotechnol. 38, 1649–1655. doi: 10.1007/s10295-011-0953-4
    Rostagno, M.A., Prado, J.M., Mudhoo, A., Santos, D.T., Forster-Carneiro, T., Meireles, M.A.A., 2015. Subcritical and supercritical technology for the production of second generation bioethanol. Crit. Rev. Biotechnol. 35, 302–312. doi: 10.3109/07388551.2013.843155
    Ruohonen, L., Aristidou, A., Frey, A.D., Penttilä, M., Kallio, P.T., 2006. Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions. Enzym. Microb. Technol. 39, 6–14. doi: 10.1016/j.enzmictec.2005.06.024
    Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5, 337–353. doi: 10.1007/s13205-014-0246-5
    Sánchez, Ó. J., Montoya, S., 2013. Production of bioethanol from biomass: an overview. Biofuel Technologies. Springer, Berlin, Heidelberg, pp. 397–441.
    Sanford, K., Chotani, G., Danielson, N., Zahn, J.A., 2016. Scaling up of renewable chemicals. Curr. Opin. Biotechnol. 38, 112–122. doi: 10.1016/j.copbio.2016.01.008
    Santos, A., San Mauro, M., Díaz, D.M., 2006. Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol. 23, 498–503. doi: 10.1016/j.fm.2005.07.004
    Sarsaiya, S., Jain, A., Kumar Awasthi, S., Duan, Y.M., Kumar Awasthi, M., Shi, J.S., 2019. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour. Technol. 291, 121905. doi: 10.1016/j.biortech.2019.121905
    Saxena, R.C., Adhikari, D.K., Goyal, H.B., 2009. Biomass-based energy fuel through biochemical routes: a review. Renew. Sustain. Energy Rev. 13, 167–178. doi: 10.1016/j.rser.2007.07.011
    Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908. doi: 10.1039/c7cs00566k
    Seesuriyachan, P., Kawee-Ai, A., Chaiyaso, T., 2017. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. Bioresour. Technol. 241, 537–544. doi: 10.1016/j.biortech.2017.05.193
    Shah, A., Patel, H., Narra, M., 2017. Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metabolites. Springer InternationalPublishing, Cham, pp. 349–393.
    Sheridan, C., 2013. Big oil turns on biofuels. Nat. Biotechnol. 31, 870–873. doi: 10.1038/nbt.2704
    Sindhu, R., Silviya, N., Binod, P., Pandey, A., 2013. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 78, 67–72. doi: 10.1016/j.bej.2012.12.015
    Singh, J.K., Vyas, P., Dubey, A., Upadhyaya, C.P., Kothari, R., Tyagi, V., Kumar, A., 2018. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Front. Biosci 10, 10.2741. http://europepmc.org/abstract/MED/29772563
    Siqueira, J.G.W., Rodrigues, C., Vandenberghe, L.P.D.S., Woiciechowski, A.L., Soccol, C.R., 2020. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132, 105419. doi: 10.1016/j.biombioe.2019.105419
    Smit, A.T., Huijgen, W.J.J., 2017. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw. Bioresour. Technol. 243, 994–999. doi: 10.1016/j.biortech.2017.07.072
    Smuga-Kogut, M., Walendzik, B., Szymanowska-Powalowska, D., Kobus-Cisowska, J., Wojdalski, J., Wieczorek, M., Cielecka-Piontek, J., 2019. Comparison of bioethanol preparation from Triticale straw using the ionic liquid and sulfate methods. Energies 12, 1155. doi: 10.3390/en12061155
    Snell, K.D., Peoples, O.P., 2009. PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels, Bioprod. Bioref. 3, 456–467. doi: 10.1002/bbb.161
    Song, S., Fung Kin Yuen, V., Di, L., Sun, Q., Zhou, K., Yan, N., 2020. Integrating biomass into the organonitrogen chemical supply chain: production of pyrrole and d-proline from furfural. Angew. Chem. Int. Ed. Engl. 59, 19846–19850. doi: 10.1002/anie.202006315
    Sreemahadevan, S., Roychoudhury, P.K., Thankamani, V., Ahammad, S.Z., 2018. Biological pretreatment of rice straw using an alkalophilic fungus MVI. 2011 for enhanced enzymatic hydrolysis yield. Sustain. Energy Technol. Assessments 30, 304–313. doi: 10.1016/j.seta.2018.10.015
    Sukri, S.S.M., Mimi Sakinah, A.M., 2018. Production of high commercial value xylooligosaccharides from meranti wood sawdust using immobilised xylanase. Appl. Biochem. Biotechnol. 184, 278–290. doi: 10.1007/s12010-017-2542-0
    Sukumaran, R.K., Mathew, A.K., Kiran Kumar, M., Abraham, A., Chistopher, M., Sankar, M., 2017. First- and second-generation ethanol in India: a comprehensiveoverview on feedstock availability, composition, and potential conversion yields. Sustainable Biofuels Development in India. Springer International Publishing, Cham, pp. 223–246.
    Sun, S.N., Sun, S.L., Cao, X.F., Sun, R.C., 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199, 49–58. doi: 10.1016/j.biortech.2015.08.061
    Thomsen, M.H., 2005. Complex media from processing of agricultural crops for microbial fermentation. Appl. Microbiol. Biotechnol. 68, 598–606. doi: 10.1007/s00253-005-0056-0
    Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., Serrano, D.P., 2017. Valorization of steam-exploded wheat straw through a biorefinery approach: bioethanol and bio-oil co-production. Fuel 199, 403–412. doi: 10.1016/j.fuel.2017.03.006
    Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., Pugazhendhi, A., 2020. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242, 125080. doi: 10.1016/j.chemosphere.2019.125080
    Travaini, R., Martín-Juárez, J., Lorenzo-Hernando, A., Bolado-Rodríguez, S., 2016. Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour. Technol. 199, 2–12. doi: 10.1016/j.biortech.2015.08.143
    Unrean, P., Ketsub, N., 2018. Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind. Crop. Prod. 123, 238–246. doi: 10.1016/j.indcrop.2018.06.071
    Valdivia, M., Galan, J.L., Laffarga, J., Ramos, J.L., 2016. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb. Biotechnol. 9, 585–594. doi: 10.1111/1751-7915.12387
    Valenzuela, S.V., Ferreres, G., Margalef, G., Pastor, F.I.J., 2017. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Carbohydr. Res. 448, 205–211. doi: 10.1016/j.carres.2017.02.004
    Vázquez, M.J., Alonso, J.L., Domı́nguez, H., Parajó, J.C., 2000. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393. doi: 10.1016/S0924-2244(01)00031-0
    Verardi, A., Lopresto, C.G., Blasi, A., Chakraborty, S., Calabrò, V., 2020. Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. Lignocellulosic Biomassto Liquid Biofuels. Elsevier, Amsterdam, pp. 67–125.
    Wischral, D., Arias, J.M., Modesto, L.F., de França Passos, D., Pereira, N. Jr, 2019. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: integrating xylose and glucose fermentation. Biotechnol. Prog. 35, e2718. doi: 10.1002/btpr.2718
    Wong, S.S., Shu, R., Zhang, J., Liu, H., Yan, N., 2020. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 49, 5510–5560. doi: 10.1039/d0cs00134a
    Xiu, S.N., Shahbazi, A., 2012. Bio-oil production and upgrading research: a review. Renew. Sustain. Energy Rev. 16, 4406–4414. doi: 10.1016/j.rser.2012.04.028
    Yamakawa, C.K., Qin, F., Mussatto, S.I., 2018. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119, 54–60. doi: 10.1016/j.biombioe.2018.09.007
    Yang, B., Wyman, C.E., 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Bioref. 2, 26–40. doi: 10.1002/bbb.49
    Yang, Y., Hu, C.W., Abu-Omar, M.M., 2012. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem 5, 405–410. doi: 10.1002/cssc.201100688
    Yi, J., He, T., Jiang, Z.C., Li, J.M., Hu, C.W., 2013. AlCl3 catalyzed conversion of hemicellulose in corn stover. Chin. J. Catal. 34, 2146–2152. doi: 10.1016/S1872-2067(12)60718-9
    Yu, J., Stahl, H., 2008. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 99, 8042–8048. doi: 10.1016/j.biortech.2008.03.071
    Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G., 2016. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 66, 751–774. doi: 10.1016/j.rser.2016.08.038
    Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: current perspectives and technological progress. Renew. Sustain. Energy Rev. 71, 475–501. doi: 10.1016/j.rser.2016.12.076
    Zhang, X., Tu, M.B., Paice, M.G., 2011. Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenergy Res. 4, 246–257. doi: 10.1007/s12155-011-9147-1
    Zhang, Y.H.P., 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35, 367–375. doi: 10.1007/s10295-007-0293-6
    Zhao, C., Ding, W.M., Chen, F., Cheng, C., Shao, Q.J., 2014. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour. Technol. 155, 34–40. doi: 10.1016/j.biortech.2013.12.091
    Zhao, Y.L., Dolat, A., Steinberger, Y., Wang, X., Osman, A., Xie, G.H., 2009. Biomass yield and changes in chemical composition of sweet Sorghum cultivars grown for biofuel. Field Crop. Res. 111, 55–64. doi: 10.1016/j.fcr.2008.10.006
    Zhao, Z., Li, N., Bhutto, A.W., Abdeltawab, A.A., Al-Deyab, S.S., Liu, G.Q., Chen, X.C., Yu, G.R., 2016. N-methyl-2-pyrrolidonium-based Brönsted-Lewis acidic ionic liquids as catalysts for the hydrolysis of cellulose. Sci. China Chem. 59, 564–570. doi: 10.1007/s11426-016-5592-1
    Zheng, Y., Shi, J., Tu, M.B., Cheng, Y.S., 2017. Principles and development of lignocellulosic biomass pretreatment for biofuels. Advances in Bioenergy. Elsevier, Amsterdam, pp. 1–68.
    Zhuang, X.S., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X.S., Zhou, G.X., Yuan, Z.H., 2016. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 199, 68–75. doi: 10.1016/j.biortech.2015.08.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(12)

    Article Metrics

    Article views (1482) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return