Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Igwilo Christopher Nnaemeka, Egbuna Samuel O, Onoh Maxwell I, Asadu O. Christain, Onyekwulu Chinelo S. Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 45-64. doi: 10.1016/j.jobab.2021.02.004
Citation: Igwilo Christopher Nnaemeka, Egbuna Samuel O, Onoh Maxwell I, Asadu O. Christain, Onyekwulu Chinelo S. Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 45-64. doi: 10.1016/j.jobab.2021.02.004

Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production

doi: 10.1016/j.jobab.2021.02.004
More Information
  • Corresponding author: chrisnnig@gmail.com (I.C. Nnaemeka)
  • Received Date: 2020-08-10
  • Accepted Date: 2020-10-17
  • Rev Recd Date: 2020-10-13
  • Available Online: 2021-02-09
  • Publish Date: 2021-01-01
  • The key process parameters for the hydrolysis and fermentation of Colocynthis vulgaris Shrad seeds shell (CVSSS) were optimized using the Box-Behnken Design (BBD) of Response Surface Methodology (RSM). Kinetic study was also carried out. The proximate analysis of the CVSSS was done by the method of the Association of Organic and Applied Chemistry (AOAC). Enzymatic hydrolysis was experimented by using Aspergillus Niger as a crude enzyme isolated from soil at sawdust dump site and screened for cellulosic activities. Factors that affected the hydrolysis of the CVSSS were screened by using the Greco-Latin square design of experiment. However, for Saccharomyces cerevisiae, factors that affected the fermentation of the CVSSS were screened by using the same Greco-Latin square design of experiment. Meanwhile, the result of the proximate analysis revealed that the CVSSS had 73.54% cellulose which could be converted to bioethanol. It was established that temperature, pH and time had significant effect on hydrolysis, while the optimum results were obtained at 46.8 ℃, 3.32 d, 5.68 and 59.87% for temperature, time, pH and glucose yield, respectively. Temperature, yeast dosage, pH and time had significant effect on fermentation, while the optimum results from optimization were found to be 33.58 ℃, 7.0, 3.55 d, 1.65 g per 50 mL and 25.6% for temperature, pH, time, yeast dosage and ethanol yield, respectively. The kinetics of both the enzymatic hydrolysis and fermentation agreed with the Michealis-Menten kinetic model with the correlation coefficients (R2) of 0.9708 and 0.8773, respectively. However, from the error analysis, the experimental and predicted values had a very good relationship as described by Michaelis-Menten model.

     

  • loading
  • Abdulkareem, A. S., Ayo, S. A., Ogochukwu, M. U., 2015. Production and characterization of bioethanol from sugarcane bagasse as alternative energy sources. London U. K. : Proceedings of the World Congress on Engineering.
    Agu, C. M. , Kadurumba, C. H. , Agulanna, A. C. , Aneke, O. O. , Agu, I. E. , Eneh, J. N. , 2018. Nonlinear kinetics, thermodynamics, and parametric studies of Colocynthis vulgaris shrad seeds oil extraction. Ind. Crop. Prod. 123, 386-400. doi: 10.1016/j.indcrop.2018.06.074
    Agu, C. M. , Menkiti, M. C. , Ekwe, E. B. , Agulanna, A. C. , 2020. Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artif. Intell. Agric. 4, 1-11. http://www.sciencedirect.com/science/article/pii/S2589721720300064
    Akponah, E. , Akpomie, O. , 2011. Analysis of the suitability of yam, potato and cassava root peels for bioethanol production using saccharomyces cerevisiae. International Research Journal of Microbiology 2, 393-398. http://www.mendeley.com/research/analysis-suitability-yam-potato-cassava-root-peels-bioethanol-production-using-saccharomyces-cerevis/
    Amerine, M. A. , Ough, C. S. , 1974. Wine and Must Analysis. John Wiley & Sons, New York.
    Ana, D. , Julie, L. , Ana, B. , Ignacio, D. , lldefonso, C. , 2013. Pretreatment of rice hulls with alkaline peroxide to enhance enzyme hydrolysis for ethanol production. The Italian Association of Chemical Engineering 32, 23-25. http://www.researchgate.net/publication/273951995_Pretreatment_of_Rice_Hulls_with_Alkaline_Peroxide_to_Enhance_Enzyme_Hydrolysis_for_Ethanol_Production
    Asadu, C. O. , Egbuna, S. O. , Chime, T. O. , Eze, C. N. , Kevin, D. , Mbah, G. O. , Ezema, A. C. , 2019. Survey on solid wastes management by composting: optimization of key process parameters for biofertilizer synthesis from agro wastes using response surface methodology (RSM). Artif. Intell. Agric. 3, 52-61. http://www.sciencedirect.com/science/article/pii/S2589721719300340
    Augustine, O. , Ayeni, O. A. , Adeeyo, O. M. , Oresegun, T. E. O. , 2015. Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. American Journal of Engineering Research 4, 14-19. http://www.researchgate.net/publication/280641412_Compositional_analysis_of_lignocellulosic_materials_Evaluation_of_an_economically_viable_method_suitable_for_woody_and_non-woody_biomass
    Carrillo, F. , Lis, M. J. , Colom, X. , Lopez-Mesas, M. , Valldeperas, J. , 2005. Effect of alkali pretreatment on kinetic study of the enzymatic hydrolysis of sugarcane bagasse 447. Brazilian Journal of Chemical Engineering 30, 437-447.
    Chen, G. , Chen, J. , Srinivasakannan, C. , Peng, J. H. , 2012. Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. 258, 3068-3073. doi: 10.1016/j.apsusc.2011.11.039
    Chen, M. , Zhao, J. , Xia, L. M. , 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411-415. doi: 10.1016/j.carbpol.2007.06.011
    Efri, M., Dwi, W. W., Djali, F., Edi, S., 2017. Optimization and kinetic modelling of the enzymatic hydrolysis of oil palm petioles. ICSAFS Conference Proceedings, 2nd International Conference on Sustainable Agriculture and Food Security, A Comprehensive Approach.
    Ezeonu, I. M., Okafor, J. I., Ogbonna, J. C., 2011. Laboratory Exercises in Microbiology. Ephrata Press,
    Farah, A. , Ahmad, T. J. , Mohd, H. K. , Maizirwan, M. , 2011. Study of growth kinetic and modelling of ethanol production by Saccharomyces cerevisae. African Journal of Biotechnology 16, 18842-18846. http://www.cabdirect.org/abstracts/20123030865.html;jsessionid=4AD84BD4D9C0C09C709D1F0BA7A6EEC5
    Fogler, H. S., 2006. Elements of Chemical Reaction Engineering. Prentice Hall of India, New
    Galbe, M. , Zacchi, G. , 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618-628. doi: 10.1007/s00253-002-1058-9
    Highina, B. K. , Hashim, I. , Bugaje, I. M. , 2011. Optimization of ethanol production from sugar molasses in Nigeria. Journal of Applied Technology in Environmental Sanitation 1, 233-237. http://www.cabdirect.org/abstracts/20123193149.html
    Horwitz, W., Latima, G., 2005. Official Method of Analysis' appendix C. Association of organic and Applied Chemistry (AOAC) International. Pp 7-12; pp 16-34
    Igbokwe, P. K. , Idogwu, C. N. , Nwabanne, J. T. , 2016. Enzymatic hydrolysis and fermentation of plantain peels: optimization and kinetic studies. Adv. Chem. Eng. Sci. 6, 216-235. doi: 10.4236/aces.2016.62023
    Ighodaro, O. M., 2012. Evaluation Study of Nigerian Species of Musa paradisiaca Peels. Available at: http://www.sciencepub.net/researcher.
    Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., Oforji, S., 2013. Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. Int. J. Environ. Sci. Dev. 213-216.
    Kitanović, S. , Milenović, D. , Veljković, V. B. , 2008. Empirical kinetic models for the resinoid extraction from aerial parts of St. John's wort (Hypericum perforatum L. ). Biochem. Eng. J. 41, 1-11. doi: 10.1016/j.bej.2008.02.010
    Lalitha, G., Sivaraji, R., 2011. Use of fruit biomass peel for ethanol production. International Journal of Pharma and Bio Science 2, 23.
    Lazic, Z. R., 2004. Design of Experiment in Chemical Engineering. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
    Lebaka, V. R. , Obulam, V. S. , Young, J. W. , 2011. Production of ethanol from mango peel by saccharomyces cerevisiae. Academic Journal 10, 4183-4189. http://www.cabdirect.org/abstracts/20113187787.html
    Luo, X. L., Liu, J., Zheng, P. T., Li, M., Zhou, Y., Huang, L. L., Chen, L. H., Shuai, L., 2019. Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnol. Biofuels 12, 51.
    Mazaheri, H. , Ghaedi, M. , Ahmadi Azqhandi, M. H. , Asfaram, A. , 2017. Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(ⅱ) removal from a binary aqueous solution by natural walnut carbon. Phys. Chem. Chem. Phys. 19, 11299-11317. doi: 10.1039/C6CP08437K
    Menkiti, M. C. , Agu, C. M. , Udeigwe, T. K. , 2017. Kinetic and parametric studies for the extractive synthesis of oil from Terminalia catappa L. kernel. React. Kinetics Mech. Catal. 120, 129-147. doi: 10.1007/s11144-016-1101-y
    Mike, B., Sue, A. A., 1998. Fermented fruits and vegetables. A global perspective. Fao Agricultural service Bulletin 134
    Murray R. S., Larry J. S., 2011. Schaum's Outlines Statistics (4th Edition). New York: McGraw Hill.
    NsukkaFarah, A. , Ahmad, T. J. , Mohd, H. K. , Maizirwan, M. , 2011. Study of growth kinetic and modelling of ethanol production by Saccharomyces cerevisae. African Journal of Biotechnology 16, 18842-18846. http://www.cabdirect.org/abstracts/20123030865.html;jsessionid=4AD84BD4D9C0C09C709D1F0BA7A6EEC5
    Ocloo, F. C. K. , Ayernor, G. S. , 2008. Physical, chemical and microbiological changes in alcoholic fermentation of sugar syrup from cassava flour. African Journal of Biotechnology 7, 164-168. http://www.oalib.com/paper/1326307
    Ogbe, A. O., George, G. A. L., 2012. Nutritional and anti-nutrient composition of melon Husks: potential as feed ingredient in poultry Diet
    Ogbonna, O. , 2013. Floral habits and seed production characteristics in Egusi melon (Colocynthis citrullus L. ). J. Plant Breed. Crop Sci. 4, 137-140. doi: 10.5897/JPBCS2013.0381
    Ogbonna, P. E. , Obi, I. U. , 2000. The influence of poultry manure application and plant density on the growth and yield of Egusi melon (Colocynthis citrullus) on the Nsukka Plains of south eastern Nigeria. Agro-Science 1, 63-74. http://www.cabdirect.org/abstracts/20033106736.html
    Ogunwa, K. I. , Ofodile, S. , Achugasim, O. , 2015. Feasibility study of melon seed oil as a source of biodiesel. J. Power Energy Eng. 3, 24-27. http://www.cqvip.com/QK/72737X/20158/HS727372015008003.html
    Onwu, D. O., 2004. Integrated Energy Conversion (1st Edition). Enugu: Immaculate Publications Limited.
    Orjiakor, P. I. , Igborbgor, C. J. , Ogu, G. I. , 2017. Bio-ethanol yielding potentials of melon seed peels using fungal isolates from palm oil effluents. IJBLST 9, 18-25. http://www.researchgate.net/publication/322629139_Bio-ethanol_yielding_potentials_of_Melon_seed_peels_using_fungal_isolates_from_Palm_oil_effluents
    Oyeleke, S. B. , Dauda, B. E. N. , Oyewole, O. A. , Okoliegbe, I. N. , Ojobode. T. , 2012. Production of bioethanol from cassava and sweet potato peels. Advanced in Environmental Biology 6, 241-245. http://www.cabdirect.org/abstracts/20123057510.html
    Pervez, S., Aman, A., Iqbal, S., Siddiqui, N., Ul Qader, S., 2014. Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnol. 14, 49.
    Pilkington, J. L. , Preston, C. , Gomes, R. L. , 2014. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crop. Prod. 58, 15-24. doi: 10.1016/j.indcrop.2014.03.016
    Pornpunyapat, J. , Chotigeat, W. , Chetpattananondh, P. , 2014. Bioethanol production from pineapple peel juice using Saccharomyces cerevisiae. Adv. Mater. Res. 875/876/877, 242-245. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=XYSW201212001047
    Rosdee, N. M., Masngut, N., Shaarani, S. M., Jamek, S., Sueb, M. M., 2020. Enzymatic hydrolysis of lignocellulosic biomass from pineapple leaves by using endo-1, 4-xylanase: effect of pH, temperature, enzyme loading and reaction time. IOP Conf. Ser. : Mater. Sci. Eng. 736, 022095.
    Sakimoto, K. , Kanna, M. C. , Matsumura, Y. , 2017. Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass Bioenergy 99, 116-121. doi: 10.1016/j.biombioe.2017.02.016
    Streamer, M. , Eriksson, K. E. , Pettersson, B. , 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. functional characterization of five endo-1, 4-beta-glucanases and one exo-1, 4-beta-glucanase. Eur. J. Biochem. 59, 607-613. doi: 10.1111/j.1432-1033.1975.tb03919.x/full
    Talib, N. B. , Triwahyono, S. , Jalil, A. A. , Mamat, C. R. , Salamun, N. , Fatah, N. A. A. , Sidik, S. M. , Teh, L. P. , 2016. Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils. Energy Convers. Manag. 108, 411-421. doi: 10.1016/j.enconman.2015.11.031
    Tengborg, C. , Galbe, M. , Zacchi, G. , 2001. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17, 110-117. doi: 10.1021/bp000145+
    Zakpaa, H. D., Mak, M., Johnson, F. S., 2009. Production of bio-ethanol from corncobs using Aspergillus niger and S. cerevisiae in simultaneous saccharification and fermentation. Academic Journal.
    Zivorad, R. L., 2004. Design of Experiment in Chemical Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(20)

    Article Metrics

    Article views (638) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return