Citation: | G. Ogwang, P.W. Olupot, H. Kasedde, E. Menya, H. Storz, Y. Kiros. Experimental evaluation of rice husk ash for applications in geopolymer mortars[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 160-167. doi: 10.1016/j.jobab.2021.02.008 |
Rice husks obtained from upland and lowland rice varieties were characterized for composition and content of ash. Each of the rice husk varieties was fired at temperatures of 600, 800 and 900 ℃ for a soaking period of 3 h. The resultant rice husk ash was analyzed for oxide composition and crystallinity using X-ray fluorescence and diffraction techniques, respectively. The generated amorphous ash with the highest silica content, together with metakaolin, aggregate, water, and an alkaline activator was employed to formulate geo-polymer mortar prisms according to the standard EN 196–1. Results showed that the content of ash in the varieties ranged from 18.3% to 28.6% dry basis. Out of this, 89 wt%–96 wt% was silica, with amorphous and crystalline forms of silica obtained at 600 ℃ and 900 ℃, respectively, regardless of the rice variety. However, at 800 ℃, the silica in the generated ash exhibited both amorphous and crystalline forms. The amorphous ash generated at 600 ℃ was used in formulation of geopolymer mortars. Compressive and flexural strength of the formulated mortar after 7 days of curing was 1.5 and 1.3 MPa, respectively. These results reveal the firing protocol to form pozzolanic ash, with potential applications in mortar production.
A.A.C.C. International, 2000. Approved Methods of the American Association of Cereal Chemists (10th ed. ). The Association, St. Paul, MN, USA.
|
Al-Majidi, M.H., Lampropoulos, A., Cundy, A., Meikle, S., 2016. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 120, 198–211. doi: 10.1016/j.conbuildmat.2016.05.085
|
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2015. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Ind. Eng. Chem. Res. 54, 7241–7250. doi: 10.1021/acs.iecr.5b01589
|
ASTM, 2013. American Society for Testing and Materials (ASTM) E873-82. Standard Test Method for Bulk Density of Densified Particulate Biomass Fuels.
|
Bakri, A.M.M., Kamarudin, H., Bnhussain, M., Nizar, I.K., Rafiza, A.R., Zarina, Y., 2012. The processing, characterization, and properties of fly ash based geopolymer concrete. Rev. Adv. Mater. Sci. 30, 90–97. http://www.researchgate.net/publication/232276373_The_processing_characterization_and_properties_of_fly_ash_based_geopolymer_concrete/download
|
Borges, P.H.R., Nunes, V.A., Panzera, T.H., Schileo, G., Feteira, A., 2016. The influence of rice husk ash addition on the properties of metakaolin-based geopolymers. Open Constr. Build. Technol. J. 10, 406–417. doi: 10.2174/1874836801610010406
|
Bosoaga, A., Masek, O., Oakey, J.E., 2009. CO2 capture technologies for cement industry. Energy Procedia1, 133–140. doi: 10.1016/j.egypro.2009.01.020
|
Daniel, A.J., Sivakamasundari, S., Abhilash, D., 2017. Comparative study on the behaviour of geopolymer concrete with hybrid fibers under static cyclic loading. Procedia Eng. . 173, 417–423. doi: 10.1016/j.proeng.2016.12.041
|
Detphan, S., Chindaprasirt, P., 2009. Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner., Metall. Mater. 16, 720–726. http://d.wanfangdata.com.cn/Periodical/bjkjdxxb-e200906019
|
Feng, D.C., Xie, N., Gong, C.W., Leng, Z., Xiao, H.G., Li, H., Shi, X.M., 2013. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Ind. Eng. Chem. Res. 52, 11575–11582. doi: 10.1021/ie4011595
|
Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A.M., Rocha, T.L.A.C., Brehm, F.A., Modolo, R.C.E., 2016. Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165, 351–359. doi: 10.1016/j.fuel.2015.10.086
|
He, J., Jie, Y.X., Zhang, J.H., Yu, Y.Z., Zhang, G.P., 2013. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37, 108–118. doi: 10.1016/j.cemconcomp.2012.11.010
|
Hossain, S.S., Mathur, L., Roy, P.K., 2018. Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. J. Asian Ceram. Soc. 6, 299–313. doi: 10.1080/21870764.2018.1539210
|
Hwang, C.L., Huynh, T.P., 2015. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 101, 1–9. doi: 10.1016/j.conbuildmat.2015.10.025
|
Jenkins, B.M., Baxter, L.L., Miles, T.R. Jr, Miles, T.R. Jr, 1998. Combustion properties of biomass. Fuel Process. Technol. 54, 17–46. doi: 10.1016/S0378-3820(97)00059-3
|
Joseph, S., Baweja, D., Crookham, G., Cook, D., 1989. Production and utilization of rice husk Sugita. (n. d. ). ash preliminary investigations. Third CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans, 861–878.
|
Kalderis, D., Bethanis, S., Paraskeva, P., Diamadopoulos, E., 2008. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour. Technol. 99, 6809–6816. doi: 10.1016/j.biortech.2008.01.041
|
Kirabira, J.B., Jonsson, S., Byaruhanga, J.K., 2005. Powder characterization of high temperature ceramic raw materials in the Lake Victoria Region. Silic. Ind. 70, 127–134. http://www.researchgate.net/publication/288396574_Powder_characterization_of_high_temperature_ceramic_raw_materials_in_the_Lake_Victoria_Region
|
Kumagai, S., Noguchi, Y., Kurimoto, Y., Takeda, K., 2007. Oil adsorbent produced by the carbonization of rice husks. Waste Manag. 27, 554–561. doi: 10.1016/j.wasman.2006.04.006
|
Kusbiantoro, A., Nuruddin, M.F., Shafiq, N., Qazi, S.A., 2012. The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Constr. Build. Mater. 36, 695–703. doi: 10.1016/j.conbuildmat.2012.06.064
|
Length, F., 2009. Elemental analysis of rice husk ash using X-ray fluorescence technique. Int. J. Phys. Sci. 4, 189–193. http://www.cabdirect.org/abstracts/20093293703.html
|
Liu, B., Gu, J., Zhou, J.B., 2016. High surface area rice husk-based activated carbon prepared by chemical activation with ZnCl2-CuCl2 composite activator. Environ. Prog. Sustain. Energy 35, 133–140. doi: 10.1002/ep.12215
|
Livi, C.N., Repette, W.L., 2017. Effect of NaOH concentration and curing regime on geopolymer. Rev. IBRACON Estrut. Mater. 10, 1174–1181. doi: 10.1590/s1983-41952017000600003
|
Maddalena, R., Roberts, J.J., Hamilton, A., 2018. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 186, 933–942. doi: 10.1016/j.jclepro.2018.02.138
|
Maeda, N., Wada, I., Kawakami, M., Ueda Tand Pushpalal, G., 2001. Development of a new furnace for the production of rice husk ash. In: Proceedings of 7th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Chennai, 835–852.
|
Mansaray, K.G., Ghaly, A.E., 1997. Physical and thermochemical properties of rice husk. Energy Sources19, 989–1004. doi: 10.1080/00908319708908904
|
Mehta, P., 1979. The chemistry and technology of cement made from rice husk ash. In: Proceedings of UNIDO/ESCAP/RCTT Workshop on Rice Husk Ash Cements. Peshawar, Regional Centre for Technology Transfer, Bangalore, 113–122.
|
Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., 2018. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Manag. 81, 104–116. doi: 10.1016/j.wasman.2018.09.050
|
Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., John, M.J., 2020. Effect of alkaline pretreatment on the thermal behavior and chemical properties of rice husk varieties in relation to activated carbon production. J. Therm. Anal. Calorim. 139, 1681–1691. doi: 10.1007/s10973-019-08553-6
|
Muthadhi, A., 2010. Studies On Production of Reactive Rice Husk Ash and Performance of RHA Concrete. Chennai metropolitan: Pondicherry University.
|
Nair, D.G., Fraaij, A., Klaassen, A.A.K., Kentgens, A.P.M., 2008. A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem. Concr. Res. 38, 861–869. doi: 10.1016/j.cemconres.2007.10.004
|
Nath, P., Sarker, P., 2012. Geopolymer concrete for ambient curing condition. Proceedings of the Australasian Structural Engineering Conference 2012 (ASEC 2012), July 11–13, 2012, 1–9.
|
Nuaklong, P., Sata, V., Chindaprasirt, P., 2018. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr. Build. Mater. 161, 365–373. doi: 10.1016/j.conbuildmat.2017.11.152
|
Saloma, H., Debby, O.E., Della, G.M., 2017. Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor. Proceedings of the 3rd International Conference on Construction and Building Engineering (ICONBUILD)2017, 050013.
|
Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., 2015. Geopolymer concrete: a review of some recent developments. Constr. Build. Mater. 85, 78–90. doi: 10.1016/j.conbuildmat.2015.03.036
|
Singh, N.B., 2018. Fly ash-based geopolymer binder : a future. Minerals 8, 299. doi: 10.1007/s12045-018-0619-x
|
Sore, S.O., Messan, A., Prud'homme, E., Escadeillas, G., Tsobnang, F., 2016. Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso - Metakaolin and rice husk ash. Constr. Build. Mater. 124, 301–311. doi: 10.1016/j.conbuildmat.2016.07.102
|
Sridhar, G., Sridhar, H.V., Dasappa, S., Paul, P.J., Rajan, N.K.S., Shrinivasa, U., Mukunda, H.S., 1996. Technology for gasifying pulverised bio-fuels including agricultural residues. Energy Sustain. Dev. 3, 9–18. doi: 10.1016/S0973-0826(08)60586-4
|
Subramanian, P., Sampathrajan, A., Venkatachalam, P., 2011. Fluidized bed gasification of select granular biomaterials. Bioresour. Technol. 102, 1914–1920. doi: 10.1016/j.biortech.2010.08.022
|
Sugita, S., 1993. On the economical production of large quantities of highly reactive rice husk ash. International Symposium on Innovative World of Concrete (ICI- IWC-93), 3–71.
|
Tirawanichakul, S., Tirawanichakul, Y., Sniso, E., 2008. Paddy dehydration by adsorption: thermo-physical properties and diffusion model of agriculture residues. Biosyst. Eng. 99, 249–255. doi: 10.1016/j.biosystemseng.2007.11.001
|
Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481. doi: 10.1016/j.rser.2015.10.122
|
UNBS, 2018. Cement-Part 1: composition, specification and conformity criteria for common cements. Uganda National Bureau of Standards, Kampala, Uganda.
|
Vélez, J.F., Chejne, F., Valdés, C.F., Emery, E.J., Londoño, C.A., 2009. Co-gasification of Colombian coal and biomass in fluidized bed: an experimental study. Fuel88, 424–430. doi: 10.1016/j.fuel.2008.10.018
|
Wanyama, I., Ochwoh, V., Nankya, E., Van Asten, J., 2015. Optimization of major nutrients (N, P and K) for lowland rice production in eastern Uganda. Int. J. Agron. Agric. Res., 7, 218–227. http://www.researchgate.net/publication/322096345_Optimisation_of_major_nutrients_N_P_and_K_for_lowland_rice_production_in_Eastern_Uganda
|
Zareei, S.A., Ameri, F., Dorostkar, F., Ahmadi, M., 2017. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud. Constr. Mater. 7, 73–81. http://www.sciencedirect.com/science/article/pii/S2214509516300924
|
Zhang, J.R., Liu, G.Y., Chen, B., Song, D., Qi, J., Liu, X.Y., 2014. Analysis of CO2 emission for the cement manufacturing with alternative raw materials: a LCA-based framework. Energy Procedia 61, 2541–2545. doi: 10.1016/j.egypro.2014.12.041
|