Citation: | Henry C. Oyeoka, Chinomso M. Ewulonu, Iheoma C. Nwuzor, Chizoba M. Obele, Joseph T. Nwabanne. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 168-185. doi: 10.1016/j.jobab.2021.02.009 |
Cellulose nanocrystals isolated from water hyacinth fiber (WHF) have been studied as a reinforcement for polyvinyl alcohol (PVA)-gelatin nanocomposite. Central composite design was used to study and optimize effects of the PVA, gelatin and cellulose nanocrystal (CNC) concentration on tensile strength and elongation of formed films. The results of this study showed that WHF CNC had a diameter range of 20–50 nm produced films reaching 13.8 MPa tensile strength. Thermal stability of the films was improved from 380 ℃ to 385 ℃ in addition of CNCs and maximum storage modulus of 3 GPa were observed when 5 wt% CNC was incorporated. However, water absorption, water vapour permeability (WVP) and moisture uptake of the films decreased in addition of CNC to the PVA-gelatin blends. Moisture uptake decreased from 22.50% to 19.05% while the least WVP when 10 wt% CNC added was 1.64 × 10–6 g/(m•h•Pa). These results show possibility for industrial application of WHF CNC and PVA-gelatin blends in biodegradable films for on-the-go food wrappers.
Abral, H., Dalimunthe, M.H., Hartono, J., Efendi, R.P., Asrofi, M., Sugiarti, E., Sapuan, S.M., Park, J.W., Kim, H.J., 2018. Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch - Stärke 70, 1700287. doi: 10.1002/star.201700287
|
Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., Patriana, F.M., 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. J. Reinf. Plast. Compos. 33, 2205–2213. doi: 10.1177/0731684414558325
|
Agustin, M.B., Ahmmad, B., de Leon, E.R.P., Buenaobra, J.L., Salazar, J.R., Hirose, F., 2013. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polym. Compos. 34, 1325–1332. doi: 10.1002/pc.22546
|
Ahmed, S, Ikram, S., 2016. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B 163, 115–124. doi: 10.1016/j.jphotobiol.2016.08.023
|
Alves, J.S., dos Reis, K.C., Menezes, E.G., Pereira, F.V., Pereira, J., 2015. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydr. Polym. 115, 215–222. doi: 10.1016/j.carbpol.2014.08.057
|
Alves, P.M.A., Carvalho, R.A., Moraes, I.C.F., Luciano, C.G., Bittante, A.M.Q.B., Sobral, P.J.A., 2011. Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocoll. 25, 1751–1757. doi: 10.1016/j.foodhyd.2011.03.018
|
Anglès, M.N., Dufresne, A., 2001. Plasticized starch/tunicin whiskers nanocomposite materials. 2. mechanical behavior. Macromolecules34, 2921–2931. doi: 10.1021/ma001555h
|
Arvanitoyannis, I.S., Nakayama, A., Aiba, S.I., 1998. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr. Polym. 37, 371–382. doi: 10.1016/S0144-8617(98)00083-6
|
Asrofi, M., Abral, H., Kasim, A., Pratoto, A., 2017. XRD and FTIR studies of nanocrystalline cellulose from water hyacinth (Eichornia crassipes) fiber. J. Metastable Nanocrystalline Mater. 29, 9–16. doi: 10.4028/www.scientific.net/JMNM.29.9
|
Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., Hafizulhaq, F., 2018a. Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: effect of ultrasonic vibration during processing. Fibers 6, 40. doi: 10.3390/fib6020040
|
Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., Park, J.W., Kim, H.J., 2018b. Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterization. Fibers Polym. 19, 1618–1625. doi: 10.1007/s12221-018-7953-1
|
ASTM Standard D882-09, 2009. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. West Conshohocken, PA: ASTM International. Available at: www.astm.org/standards.
|
ASTM Standard E96/E96M-05, 2005. Standard Test Method for Water Vapour Transmission of Materials. West Conshohocken, PA: ASTM International. Available at: www.astm.org/standards.
|
Avella, M., de Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G., 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93, 467–474. doi: 10.1016/j.foodchem.2004.10.024
|
Avérous, L., Pollet, E., 2012. Biodegradable Polymers. Environmental Silicate Nano-Biocomposites. London: SpringerLondon, 13–39.
|
Azahari, N.A., Othman, N., Ismail, H., 2011. Biodegradation studies of polyvinyl alcohol/corn starch blend films in solid and solution media. J. Phys. Sci. 22, 15–31. http://www.oalib.com/paper/3089913
|
Bahy, G.S.E., El-Sayed, E.S., Mahmoud, A.A., Gweily, N.M., 2012. Preparation and characterization of poly vinyl alcohol/gelatin blends. J. Appl. Sci. Res. 8, 3544–3551. http://www.researchgate.net/publication/285810990_Preparation_and_characterization_of_poly_vinyl_alcoholgelatin_blends
|
Bai, H.Y., Sun, Y.L., Xu, J., Dong, W.F., Liu, X.Y., 2015. Rheological and structural characterization of HA/PVA-SbQ composites film-forming solutions and resulting films as affected by UV irradiation time. Carbohydr. Polym. 115, 422–431. doi: 10.1016/j.carbpol.2014.08.103
|
Bastarrachea, L., Dhawan, S., Sablani, S.S., 2011. Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng. Rev. 3, 79–93. doi: 10.1007/s12393-011-9034-8
|
Belbekhouche, S., Bras, J., Siqueira, G., Chappey, C., Lebrun, L., Khelifi, B., Marais, S., Dufresne, A., 2011. Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr. Polym. 83, 1740–1748. doi: 10.1016/j.carbpol.2010.10.036
|
Benini, K.C.C.C., Voorwald, H.J.C., Cioffi, M.O.H., Rezende, M.C., Arantes, V., 2018. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr. Polym. 192, 337–346. doi: 10.1016/j.carbpol.2018.03.055
|
Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M., 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 94, 154–169. doi: 10.1016/j.carbpol.2013.01.033
|
Burton, J., van Oosterhout, E., Ensbey, R., Julien, M., 2010. Water Hyacinth (Eichhornia crassipes): Weed of National Significance. New South Wales: Department of Primary Industries.
|
Cañigueral, N., Vilaseca, F., Méndez, J.A., López, J.P., Barberà, L., Puig, J., Pèlach, M.A., Mutjé, P., 2009. Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chem. Eng. Sci. 64, 2651–2658. doi: 10.1016/j.ces.2009.02.006
|
Chen, D., Lawton, D., Thompson, M.R., Liu, Q., 2012. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr. Polym. 90, 709–716. doi: 10.1016/j.carbpol.2012.06.002
|
Choo, K., Ching, Y.C., Chuah, C.H., Julai, S., Liou, N.S., 2016. Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9, E644. doi: 10.3390/ma9080644
|
Csiszár, E., Nagy, S., 2017. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydr. Polym. 174, 740–749. doi: 10.1016/j.carbpol.2017.06.103
|
Danjaji, I.D., Nawang, R., Ishiaku, U.S., Ismail, H., Mohd Ishak, Z.A.M., 2002. Degradation studies and moisture uptake of sago-starch-filled linear low-density polyethylene composites. Polym. Test. 21, 75–81. doi: 10.1016/S0142-9418(01)00051-4
|
Dey, K., Ganguli, S., Ghoshal, S., Khan, M.A., Khan, R.A., 2014. Study of the effect of gamma irradiation on the mechanical properties of polyvinyl alcohol based gelatin blend film. OALib 1, 1–10. doi: 10.4236/oalib.1100639
|
Dufresne, A., 2012. Nanocellulose: From Nature to High Performance Tailored Material. Berlin/Boston: De Gruyter.
|
El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., El Achaby, M., 2015. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr. Polym. 129, 156–167. doi: 10.1016/j.carbpol.2015.04.051
|
Ewulonu, C.M., Chukwuneke, J.L., Nwuzor, I.C., Achebe, C.H., 2020. Fabrication of cellulose nanofiber/polypyrrole/polyvinylpyrrolidone aerogels with box-Behnken design for optimal electrical conductivity. Carbohydr. Polym. 235, 116028. doi: 10.1016/j.carbpol.2020.116028
|
Ewulonu, C.M., Liu, X.R., Wu, M., Huang, Y., 2019. Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS). Cellulose26, 4371–4389. doi: 10.1007/s10570-019-02382-4
|
Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Gandini, A., Berglund, L.A., Salmén, L., 2010. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym. 81, 394–401. doi: 10.1016/j.carbpol.2010.02.037
|
Ferreira, F.V., Pinheiro, I.F., Gouveia, R.F., Thim, G.P., Lona, L.M.F., 2017. Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym. Compos. 39, E9–E29. doi: 10.1002/pc.24583
|
Firouzi, M., Nguyen, A.V., 2014. Effects of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds. Adv. Powder Technol. 25, 1212–1219. doi: 10.1016/j.apt.2014.06.004
|
Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O., Pasquini, D., 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Ind. Crop. Prod. 42, 480–488. doi: 10.1016/j.indcrop.2012.06.041
|
Ghaderi, J., Hosseini, S.F., Keyvani, N., Gómez-Guillén, M.C., 2019. Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll. 95, 122–132. doi: 10.1016/j.foodhyd.2019.04.021
|
Goheen, S.M., Wool, R.P., 1991. Degradation of polyethylene-starch blends in soil. J. Appl. Polym. Sci. 42, 2691–2701. doi: 10.1002/app.1991.070421007
|
Habibi, Y., Lucia, L.A., Rojas, O.J., 2010. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500. doi: 10.1021/cr900339w
|
Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., Nasri, M., 2016. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. Int. 23, 15310–15320. doi: 10.1007/s11356-016-6699-9
|
Han, J.H., Aristippos, G., 2005. Edible films and coatings: a review. Innovations in Food Packaging. Amsterdam: Elsevier, 239–262.
|
Heap, B., 2009. Preface. philosophical transactions of the royal society. Biol. Sci. 364, 1971. doi: 10.1098/rstb.2009.0030
|
Islam, M.S., Rahman, M.M., Gafur, M.A., Mustafa, A.I., Khan, M.A., 2014. Preparation and characterization of cellulose-gelatin nanocomposite isolated from jute for biomedical application. Mater. Sci. : Indian J. 11, 105–112. doi: 10.1186/2193-1801-3-105
|
Ismaiel, A.M., Salman, H.M.A., Said, H.M., Abd El-sadek, M.S., 2018. Synthesis and characterization of biodegradable polyvinyl alcohol/gelatin polymer blend film based on gamma radiation. Indo Am. J. Pharm. Sci. 5, 3345–3352.
|
Jiang, Y., Li, Y., Chai, Z., Leng, X., 2010. Study of the physical properties of whey protein isolate and gelatin composite films. J. Agric. Food Chem. 58, 5100–5108. doi: 10.1021/jf9040904
|
Kanatt, S.R., Tanvi, J., Kirti, S., & Chawla, S.P., 2017. PVA-Gelatin films incorporated with tomato pulp: a potential primary food packaging film. Int. J. Curr. Microbiol. Appl. Sci. 6, 1428–1441. doi: 10.20546/ijcmas.2017.611.170
|
Kanmani, P., Rhim, J.W., 2014. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 106, 190–199. doi: 10.1016/j.carbpol.2014.02.007
|
Kargarzadeh, H., Johar, N., Ahmad, I., 2017. Starch biocomposite film reinforced by multiscale rice husk fiber. Compos. Sci. Technol. 151, 147–155. doi: 10.1016/j.compscitech.2017.08.018
|
Kawai, F., Hu, X.P., 2009. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84, 227–237. doi: 10.1007/s00253-009-2113-6
|
Kerfoot, D.G.E. N, 2012. In Ullmann's Encyclopedia Of Industrial Chemistry. Weinheim, Germany: Wiley-VCH verlag GmbH & co. KGaA.
|
Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K., 2015. Morphological and mechanical properties of cellulose nanocrystals reinforced poly (vinyl alcohol) bio-composite films. Trends Carbohydr. Res. 7, 23–30. doi: 10.3923/ppj.2015.23.30
|
Kumar, A., Singh Negi, Y., Choudhary, V., Kant Bhardwaj, N., 2020. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J. Mater. Phys. Chem. 2, 1–8. doi: 10.1080/1354750x.2019.1691657
|
Kumar, S., Shukla, A., Baul, P.P., Mitra, A., Halder, D., 2018. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life 16, 178–184. doi: 10.1016/j.fpsl.2018.03.008
|
Lu, P., Hsieh, Y.L., 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564–573. doi: 10.1016/j.carbpol.2011.08.022
|
Luo, J., Chang, H.B., Bakhtiary Davijani, A.A., Liu, H.C., Wang, P.H., Moon, R.J., Kumar, S., 2017. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose 24, 1745–1758. doi: 10.1007/s10570-017-1219-8
|
Ma, X.H., Cheng, Y.J., Qin, X.L., Guo, T., Deng, J., Liu, X., 2017. Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT 86, 318–326. doi: 10.1016/j.lwt.2017.08.012
|
Mangaraj, S., Goswami, T.K., Mahajan, P.V., 2009. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng. Rev. 1, 133–158. doi: 10.1007/s12393-009-9007-3
|
Mariano, M., Cercená, R., Soldi, V., 2016. Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind. Crop. Prod. 94, 454–462. doi: 10.1016/j.indcrop.2016.09.011
|
Mochochoko, T., Oluwafemi, O.S., Jumbam, D.N., Songca, S.P., 2013. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr. Polym. 98, 290–294. doi: 10.1016/j.carbpol.2013.05.038
|
Mukherjee, R., Nandi, B., 2004. Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int. Biodeterior. Biodegrad. 53, 7–12. doi: 10.1016/S0964-8305(03)00112-4
|
Naduparambath, S., Sreejith, M.P., Jinitha, T.V., Shaniba, V., Aparna, K.B., Purushothaman, E., 2018. Development of green composites of poly (vinyl alcohol) reinforced with microcrystalline cellulose derived from sago seed shells. Polym. Compos. 39, 3033–3039. doi: 10.1002/pc.24307
|
Nigam, J.N., 2002. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechno l97, 107–116. doi: 10.1016/S0168-1656(02)00013-5
|
Niranjana Prabhu, T., Prashantha, K., 2018. A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polym. Compos. 39, 2499–2522. doi: 10.1002/pc.24236
|
Noshirvani, N., Hong, W., Ghanbarzadeh, B., Fasihi, H., Montazami, R., 2018. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int. J. Biol. Macromol. 107, 2065–2074. doi: 10.1016/j.ijbiomac.2017.10.083
|
Otoni, C.G., Avena-Bustillos, R.J., Azeredo, H.M.C., Lorevice, M.V., Moura, M.R., Mattoso, L.H.C., McHugh, T.H., 2017. Recent advances on edible films based on fruits and vegetables—a review. Compr. Rev. Food Sci. Food Saf. 16, 1151–1169. doi: 10.1111/1541-4337.12281
|
Patricia Miranda, S., Garnica, O., Lara-Sagahon, V., Cárdenas, G., 2004. Water vapor permeability and mechanical properties of chitosan composite films. J. Chil. Chem. Soc. 49: 173–178. http://www.oalib.com/paper/878337
|
Pitaloka, A.B., Saputra, A.H., Nasikin, M., 2013. Water hyacinth for superabsorbent polymer material. World Appl. Sci. J. 22, 747–754. http://www.researchgate.net/publication/286280771_Water_hyacinth_for_superabsorbent_polymer_material
|
Popescu, M.C., Dogaru, B.I., Goanta, M., Timpu, D., 2018. Structural and morphological evaluation of CNC reinforced PVA/starch biodegradable films. Int. J. Biol. Macromol. 116, 385–393. doi: 10.1016/j.ijbiomac.2018.05.036
|
Popescu, M.C., Dogaru, B.I., Popescu, C.M., 2017. The influence of cellulose nanocrystals content on the water sorption properties of bio-based composite films. Mater. Des. 132, 170–177. doi: 10.1016/j.matdes.2017.06.067
|
Qi, L.F., Xu, Z.R., Jiang, X., Hu, C.H., Zou, X.F., 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339, 2693–2700. doi: 10.1016/j.carres.2004.09.007
|
Rahman, M., Dey, K., Parvin, F., Sharmin, N., Khan, R.A., Sarker, B., Nahar, S., Ghoshal, S., Khan, M.A., Billah, M.M., Zaman, H.U., Chowdhury, A.M.S., 2011. Preparation and characterization of gelatin-based PVA film: effect of gamma irradiation. Int. J. Polym. Mater. Polym. Biomater. 60, 1056–1069. doi: 10.1080/00914037.2010.551365
|
Ramos, M., Jiménez, A., Garrigós, M.C., 2016. Carvacrol-Based Films. Antimicrobial Food Packaging. Amsterdam: Elsevier, 329–338.
|
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83–92. doi: 10.1016/j.carbpol.2010.01.059
|
Said, H.M., 2013. Development of films based on poly (vinyl alcohol)/gelatin blends cross linked by electron beam irradiation. Arab J. Nucl. Sci. Appl. 46, 70–78. http://www.researchgate.net/publication/303255768_Development_of_films_based_on_poly_vinyl_alcoholgelatin_blends_cross_linked_by_electron_beam_irradiation
|
Sajjan, A.M., Naik, M.L., Kulkarni, A.S., Fazal-E-Habiba Rudgi, U., M, A., Shirnalli, G.G., A, S., Kalahal, P.B., 2020. Preparation and characterization of PVA-Ge/PEG-400 biodegradable plastic blend films for packaging applications. Chem. Data Collect. 26, 100338. doi: 10.1016/j.cdc.2020.100338
|
Salisu, A.A., 2012. Preparation and characterization of biodegradable poly(vinyl alcohol)/starch blends. Chem. Search J. 3, 34–37. http://www.ajol.info/index.php/csj/article/view/115862
|
Saurabh, C.K., Dungani, R., Owolabi, A.F., Atiqah, N.S., Zaidon, A., Sri Aprilia, N.A., Md Sarker, Z., Abdul Khalil, H.P.S., 2016. Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineesis) fronds: morphology, chemical, crystallinity, and thermal characteristics. BioResources 11, 6742–6755. http://www.researchgate.net/publication/304750066_Effect_of_Hydrolysis_Treatment_on_Cellulose_Nanowhiskers_from_Oil_Palm_Elaeis_guineesis_Fronds_Morphology_Chemical_Crystallinity_and_Thermal_Characteristics
|
Segal, L., Creely, J.J., Martin, A.E. Jr, Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794. doi: 10.1177/004051755902901003
|
Singh, S., Gaikwad, K.K., Lee, Y.S., 2018. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int. J. Biol. Macromol. 107, 1879–1887. doi: 10.1016/j.ijbiomac.2017.10.057
|
Sionkowska, A., 2011. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog. Polym. Sci. 36, 1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003
|
Slavutsky, A.M., Bertuzzi, M.A., 2014. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr. Polym. 110, 53–61. doi: 10.1016/j.carbpol.2014.03.049
|
Sorrentino, A., Gorrasi, G., Vittoria, V., 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95. doi: 10.1016/j.tifs.2006.09.004
|
Tang, X.Z., Kumar, P., Alavi, S., Sandeep, K.P., 2012. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit. Rev. Food Sci. Nutr. 52, 426–442. doi: 10.1080/10408398.2010.500508
|
Wise, L.E., Murphy, M., A.A., D., 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper 122, 35. http://ci.nii.ac.jp/naid/10006323318
|
Xu, Y.X., Scales, A., Jordan, K., Kim, C., Sismour, E., 2017. Starch nanocomposite films incorporating grape pomace extract and cellulose nanocrystal. J. Appl. Polym. Sci. 134, 44438. doi: 10.1002/app.44438
|
Yadollahi, M., Namazi, H., Barkhordari, S., 2014. Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108, 83–90. doi: 10.1016/j.carbpol.2014.03.024
|
Zhou, L., He, H., Jiang, C., Ma, L., Yu, P., 2017. Cellulose nanocrystals from cotton stalk for reinforcement of poly (vinyl alcohol) composites. Cellulose Chem. Technol. 51, 109–119. http://smartsearch.nstl.gov.cn/paper_detail.html?id=07c13e1ad3c76d81d8adddb81dc45321
|