Citation: | Dunchi Xiao, Xinzhu Jin, Yuanyuan Song, Yu Zhang, Xun Li, Fei Wang. Enzymatic Acylation of Proanthocyanidin Dimers from Acacia Mearnsii Bark: Effect on Lipophilic and Antioxidant Properties[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 359-366. doi: 10.1016/j.jobab.2021.03.001 |
Proanthocyanin (PA) dimers isolated from Acacia mearnsii bark were enzymatically acylated with palmitic acid as the acyl donor by immobilized Candida antarctica lipase on acrylic resin (Novozym 435). The acylation reaction conditions were optimized by comparing the amount of enzyme, the temperature, the reaction solvents, initial water content, substrate molar ratios and reaction time. The highest acylation conversion of 96.53% was achieved under the follow conditions: PA dimers/palmitic acid at a molar ratio of 1꞉10 in tert-amyl alcohol; initial water content of 5% at 60 ℃ for 12 h with 30 g/L enzyme dosage. Introducing palmitic acid into PA dimers significantly improved both the lipophilicity and antioxidant properties. The 1-octanol/water partition coefficient of the PA dimers and their derivatives showed that the lipophilicity of the derivatives were 2.4 times higher than that of the PA dimers. The derivatives exhibited strong antioxidant scavenging capacities, approximately 1.6 times greater than the original dimers. This work is of great significance to expand the application of natural PA dimers in cosmetic and food industries and also lay a foundation for the high value-added utilization of A. mearnsii.
Azevedo, J., Fernandes, I., Faria, A., Oliveira, J., Fernandes, A., de Freitas, V., Mateus, N., 2010. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 119, 518-523 doi: 10.1016/j.foodchem.2009.06.050
|
Cao, S.L., Deng, X., Xu, P., Huang, Z.X., Zhou, J., Li, X.H., Zong, M.H., Lou, W.Y., 2017. Highly efficient enzymatic acylation of dihydromyricetin by the immobilized lipase with deep eutectic solvents as cosolvent. J. Agric. Food Chem. 65, 2084-2088 doi: 10.1021/acs.jafc.7b00011
|
Chen, M., Yu, S., 2017. Lipophilized grape seed proanthocyanidin derivatives as novel antioxidants. J. Agric. Food Chem. 65, 1598-1605 doi: 10.1021/acs.jafc.6b05609
|
Chen, X., Xiong, J., He, L.X., Zhang, Y., Li, X., Zhang, L.P., Wang, F., 2018. Effects of in vitro digestion on the content and biological activity of polyphenols from Acacia mearnsii bark. Molecules 23, 1804 doi: 10.3390/molecules23071804
|
de Araújo, M.E.M.B., Franco, Y.E.M., Messias, M.C.F., Longato, G.B., Pamphile, J.A., Carvalho, P.D.O., 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 83, 7-22 http://pdfs.semanticscholar.org/7428/f079456fd86e41242664cae40dd0ac561624.pdf
|
Enaud, E., Humeau, C., Piffaut, B., Girardin, M., 2004. Enzymatic synthesis of new aromatic esters of phloridzin. J. Mol. Catal. B: Enzym. 27, 1-6 doi: 10.1016/j.molcatb.2003.08.002
|
Gayot, S., Santarelli, X., Coulon, D., 2003. Modification of flavonoid using lipase in non-conventional media: effect of the water content. J. Biotechnol. 101, 29-36 doi: 10.1016/S0168-1656(02)00286-9
|
Hong, S., Liu, S.B., 2016. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity. Food Chem 197, 415-421 doi: 10.1016/j.foodchem.2015.10.134
|
Laane, C., Boeren, S., Vos, K., Veeger, C., 2009. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30, 81-87 http://eurekamag.com/pdf.php?pdf=006358345
|
Liu, G.J., Zhou, M., Ye, F.X., Xiong, J., Jiang, P., Li, X., Zhang, Y., Wang, F., 2016. Study on the whitening and sunscreen effects of proanthocyanidins from Acacia mearnsii bark. J. For. Eng. 1, 42-47 http://en.cnki.com.cn/Article_en/CJFDTotal-LKKF201603008.htm
|
Lu, L.C., Dong, Q.M., Yang, T., 2020. Improvement of reaction ability of mimosa tanninwith formaldehyde by photocatalysis. J. For. Eng. 5, 69-74
|
Ma, X., Yan, R., Yu, S., Lu, Y., Li, Z., Lu, H., 2012. Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives. J. Agric. Food Chem. 60, 10844-10849 doi: 10.1021/jf303595e
|
Oldoni, T.L., Melo, P.S., Massarioli, A.P., Moreno, I.A., Bezerra, R.M., Rosalen, P.L., da Silva, G.V., Nascimento, A.M., Alencar, S.M., 2016. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques. Food Chem. 192, 306-312 doi: 10.1016/j.foodchem.2015.07.004
|
Omar, M.H., Mullen, W., Crozier, A., 2011. Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. J. Agric. Food Chem. 59, 1363-1369 doi: 10.1021/jf1032729
|
Plaza, M., Pozzo, T., Liu, J., Gulshan Ara, K.Z., Turner, C., Nordberg Karlsson, E., 2014. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 62, 3321-3333 doi: 10.1021/jf405570u
|
Rauf, A., Imran, M., Abu-Izneid, T., Iahtisham, Ul-Haq, Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., Rasul Suleria, H.A., 2019. Proanthocyanidins: a comprehensive review. Biomed. Pharmacother. 116, 108999 doi: 10.1016/j.biopha.2019.108999
|
Smeriglio, A., Barreca, D., Bellocco, E., Trombetta, D., 2017. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 174, 1244-1262 doi: 10.1111/bph.13630
|
Viskupicova, J., Ondrejovicm, M., Sturdik, E., 2010. The potential and practical applications of acylated flavonoids. Pharmazie 64, 355-360 http://www.researchgate.net/profile/Jana_Viskupicova2/publication/26682407_The_potential_and_practical_applications_of_acylated_flavonoids/links/0046353181f8858346000000
|
Xanthakis, E., Theodosiou, E., Magkouta, S., Stamatis, H., Loutrari, H., Roussos, C., Kolisis, F., 2010. Enzymatic transformation of flavonoids and terpenoids: structural and functional diversity of the novel derivatives. Pure Appl. Chem. 82, 1-16 doi: 10.1351/PAC-CON-09-01-19
|
Xu, J., Qian, J.Q., Li, S.Q., 2014. Enzymatic acylation of isoorientin isolated from antioxidant of bamboo leaves with palmitic acid and antiradical activity of the acylated derivatives. Eur. Food Res. Technol. 239, 661-667 doi: 10.1007/s00217-014-2262-4
|
Yang, L., Xian, D., Xiong, X., Lai, R., Song, J., Zhong, J., 2018. Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed. Res. Int. 3, 8584136
|
Yang, T.K., Rebsdorf, M., Engelrud, U., Xu, X.B., 2005. Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. J. Agric. Food Chem. 53, 1475-1481 doi: 10.1021/jf048405g
|
Yang, W., Kortesniemi, M., Yang, B., Zheng, J., 2018. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. J. Agric. Food Chem. 66, 2909-2916 doi: 10.1021/acs.jafc.7b05924
|
Zhang, L., Yang, S.M., Xu, C.D., Wang, F., Hu, X.A., 2017. Research on the mass concentration and antioxidation of proanthocyanidins in different tissues from Phyllanthus emblica Linn. J. For. Eng. 2, 57-62 http://en.cnki.com.cn/Article_en/CJFDTOTAL-LKKF201704010.htm
|
Zhou, M., Liu, G.J., He, L.X., Wang, F., 2017. Preparation and antioxidant activity of proanthocyanidins dimers from Acacia mearnsii de willd. Chem. Ind. For. Prod. 37, 135-140 http://www.researchgate.net/publication/317933460_Preparation_and_Antioxidant_Activity_of_Proanthocyanidins_Dimers_from_Acacia_mearnsii_De_Willd
|
Zhu, S., Li, Y., Li, Z., Ma, C.Y., Lou, Z.X., Yokoyama, W., Wang, H.X., 2014. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives. Food Res. Int. 56, 279-286 doi: 10.1016/j.foodres.2013.10.026
|
Zhu, S., Li, Y., Ma, C.Y., Lou, Z.X., Chen, S.W., Dai, J., Wang, H.X., 2013. Optimization of lipase-catalyzed synthesis of acetylated EGCG by response surface methodology. J. Mol. Catal. B: Enzym. 97, 87-94 doi: 10.1016/j.molcatb.2013.08.002
|