Citation: | Pavan Kumar Dara, Anjana Geetha, Upasana Mohanty, Mahadevan Raghavankutty, Suseela Mathew, Ravishankar Chandragiri Nagarajarao, Anandan Rangasamy. Extraction and Characterization of Myofibrillar Proteins from Different Meat Sources: A Comparative Study[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 367-378. doi: 10.1016/j.jobab.2021.04.004 |
In the present study, myofibrillar proteins were extracted from the meat proteins of beef, lamb, chicken, tuna and emperor fish using non-denaturation method, and their physico-chemical and rheological properties were assessed. The myofibrillar proteins of beef, emperor and lamb samples had higher percentage of protein extractability than tuna and chicken samples. The tuna sample showed significantly higher bound bromophenol blue (BPB) value while lamb samples showed lower value (P < 0.05). The myofibrillar protein of chicken sample was found to have more ionic and hydrogen bonds than all other myofibrillar samples. The disulphide bonds in tuna and lamb myofibrillar protein samples were significantly higher than other three samples (P < 0.05). The myofibrillar protein samples showed major bands myosin heavy chain, α-actinin, desimin, actin, troponin, tropomyosin and myosin light chain with wider molecular weight distribution in the range of 20–200 ku. The myofibrillar proteins exhibited Newtonian and shear thickening nature behaviour at lower protein concentration (1 mg/mL) as revealed by flow profile and visco-elastic analysis using rheometer.
Bulaj, G., 2005. Formation of disulfide bonds in proteins and peptides. Biotechnol. Adv. 23, 87-92 doi: 10.1016/j.biotechadv.2004.09.002
|
Chan, J.K., Gill, T.A., 1994. Thermal aggregation of mixed fish myosins. J. Agric. Food Chem. 42, 2649-2655 doi: 10.1021/jf00048a001
|
Chan, J.K., Gill, T.A., Paulson, A., 1992. Cross-linking of myosin heavy chains from cod, herring and silver Hake during thermal setting. J. Food Sci. 57, 906-912 doi: 10.1111/j.1365-2621.1992.tb14320.x
|
Chapleau, N.J., Lamballerie-Anton, M.I., 2003. Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing. Eur. Food Res. Technol. 216, 470-476 doi: 10.1007/s00217-003-0684-5
|
Chelh, I., Gatellier, P., Santé-Lhoutellier, V., 2006. Technical note: a simplified procedure for myofibril hydrophobicity determination. Meat Sci 74, 681-683 doi: 10.1016/j.meatsci.2006.05.019
|
Chen, X., Tume, R.K., Xu, X., Zhou, G., 2017. Solubilization of myofibrillar proteins in water or low ionic strength media: classical techniques, basic principles, and novel functionalities. Crit. Rev. Food Sci. Nutr. 57, 3260-3280 doi: 10.1080/10408398.2015.1110111
|
Chen, X., Xu, X.L., Liu, D.M., Zhou, G.H., Han, M.Y., Wang, P., 2018. Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating. Food Hydrocoll 77, 524-533 doi: 10.1016/j.foodhyd.2017.10.030
|
Choi, S.M., Mine, Y., Ma, C.Y., 2006. Characterization of heat-induced aggregates of globulin from common buckwheat (Fagopyrum esculentum Moench). Int. J. Biol. Macromol. 39, 201-209 doi: 10.1016/j.ijbiomac.2006.03.025
|
Christianson, D., Bagley, E., 1984. Yield stresses in dispersions of swollen: deformable cornstarch granules. Cereal Chem. 61, 500-503 http://naldc.nal.usda.gov/download/25470/PDF
|
Diniz, F.M., Martin, A.M., 1997. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. LWT-Food Sci. Technol. 30, 266-272 doi: 10.1006/fstl.1996.0184
|
Donovan, J.W., 1969. Changes in ultraviolet absorption produced by alteration of protein conformation. J. Biol. Chem. 244, 1961-1967 doi: 10.1016/S0021-9258(18)94353-X
|
Flory, P.J., Weaver, E.S., 1960. Helix[UNK] coil transitions in dilute aqueous collagen solutions1. J. Am. Chem. Soc. 82, 4518-4525 doi: 10.1021/ja01502a018
|
Glicksman, M., 1969. Rheology, texture and gums. Gum Technology in the Food Industry. New York and London. Academic Press, UK, pp. 56–93.
|
Guo, X.J., Wang, R.Q., 2018. Changes in secondary structure of myofibrillar protein and its relationship with water dynamic changes during storage of battered and deep-fried pork slices. Food Sci. Biotechnol. 27, 1667-1673 doi: 10.1007/s10068-018-0395-0
|
Hayakawa, I., Linko, Y.Y., Linko, P., 1996. Mechanism of high pressure denaturation of proteins. LWT-Food Sci. Technol. 29, 756-762 doi: 10.1006/fstl.1996.0118
|
Hopkins, D.L., Thompson, J.M., 2002. The degradation of myofibrillar proteins in beef and lamb using denaturing electrophoresis: an overview. J. Muscle Foods 13, 81-102 doi: 10.1111/j.1745-4573.2002.tb00323.x
|
Jia, D., You, J., Hu, Y., Liu, R., Xiong, S., 2015. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chem. 185, 212-218 doi: 10.1016/j.foodchem.2015.03.130
|
Kumar, P., Correspondence, P., Elavarasan, K., Shamasundar, B., 2017. Functional properties of gelatin obtained from croaker fish (Johnius sp) skin by rapid method of extraction.
|
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 doi: 10.1038/227680a0
|
Lana, A., Zolla, L., 2016. Proteolysis in meat tenderization from the point of view of each single protein: a proteomic perspective. J. Proteomics 147, 85-97 doi: 10.1016/j.jprot.2016.02.011
|
Lee, C.H., Moturi, V., Lee, Y., 2009. Thixotropic property in pharmaceutical formulations. J. Control Release 136, 88-98 doi: 10.1016/j.jconrel.2009.02.013
|
Li, G.S., Chen, Y.T., Xuan, S.F., Lv, M., Zhang, J.J., Lou, Q.M., Jia, R., Yang, W.G., 2019. Rheological properties and structure of myofibrillar protein extracted from Oratosquilla oratoria muscle as affected by ultra-high pressure. Int. J. Food Prop. 22, 1310-1321 doi: 10.1080/10942912.2019.1642915
|
Liu, Q., Bao, H.R., Xi, C.R., Miao, H.L., 2014. Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. J. Food Eng. 121, 58-63 doi: 10.1016/j.jfoodeng.2013.08.016
|
Liu, R., Zhao, S.M., Xie, B.J., Xiong, S.B., 2011. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocoll 25, 898-906 doi: 10.1016/j.foodhyd.2010.08.016
|
Liu, Y.M., Lin, T.S., Lanier, T.C., 1982. Thermal denaturation and aggregation of actomyosin from Atlantic croaker. J. Food Sci. 47, 1916-1920 doi: 10.1111/j.1365-2621.1982.tb12913.x
|
Liu, Z.Z., Zhang, L., Malfliet, A., Blanpain, B., Guo, M.X., 2018. Non-Newtonian behavior of solid-bearing silicate melts: an experimental study. J. Non-Cryst. Solids 493, 65-72 doi: 10.1016/j.jnoncrysol.2018.04.042
|
López-Bote, C., 2017. Chemical and Biochemical Constitution of muscle. Lawrie's Meat Science. Elsevier, Amsterdam, pp. 99–158.
|
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J. Bio. Chem. 193, 265-275 doi: 10.1016/S0021-9258(19)52451-6
|
Macosko, C.W., Larson, R.G., 1994. Rheology: Principles, Measurements, and Applications. W iley-VCH, Weinheim.
|
Malhotra, A., Coupland, J.N., 2004. The effect of surfactants on the solubility, Zeta potential, and viscosity of soy protein isolates. Food Hydrocoll 18, 101-108 doi: 10.1016/S0268-005X(03)00047-X
|
Malva, A.D., Albenzio, M., Santillo, A., Russo, D., Figliola, L., Caroprese, M., Marino, R., 2018. Methods for extraction of muscle proteins from meat and fish using denaturing and nondenaturing solutions. J. Food Qual. 2018, 1-9
|
Mehta, N.K., Chouksey, M.K., Balange, A.K., Tripathi, G., Nayak, B.B., 2017. Physicochemical and gel properties of myofibrillar protein from sin croaker (Johnius dussumieri) fish during ice storage. J. Aquat. Food Prod. Technol. 26, 71-85 doi: 10.1080/10498850.2015.1092485
|
Pearce, K.N., Kinsella, J.E., 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716-723 doi: 10.1021/jf60217a041
|
Rao, M.A., Kenny, J.F., 1975. Flow properties of selected food gums. Can. Inst. Food Sci. Technol. J. 8, 142-148 doi: 10.1016/S0315-5463(75)73766-5
|
Rao, M.A., Tattiyakul, J., 1999. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydr. Polym. 38, 123-132 doi: 10.1016/S0144-8617(98)00112-X
|
Robinson, H.W., Hogden, C.G., 1940. The biuret reaction in the determination of serum proteins: i. a study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. J. Biol. Chem. 135, 707-725 doi: 10.1016/S0021-9258(18)73134-7
|
Sathe, S.K., Salunkhe, D.K., 1981. Functional properties of the great northern bean (Phaseolus vulgaris L. ) proteins: emulsion, foaming, viscosity, and gelation properties. J. Food Sci. 46, 71-81 doi: 10.1111/j.1365-2621.1981.tb14533.x
|
Stone, A.P., Stanley, D.W., 1992. Mechanisms of fish muscle gelation. Food Res. Int. 25, 381-388 doi: 10.1016/0963-9969(92)90113-J
|
Sun, X.D., Holley, R.A., 2011. Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf. 10, 33-51 http://www.onacademic.com/detail/journal_1000035167650810_da34.html
|
Tejada, M., Huidobro, A., Mohamed, G.F., 2003. Comparison of gilthead sea bream (Sparus aurata) and Hake (Merluccius merluccius) muscle proteins during iced and frozen storage. J. Sci. Food Agric. 83, 113-122 doi: 10.1002/jsfa.1289
|
Wang, Y., Zhou, Y., Li, P.J., Wang, X.X., Cai, K.Z., Chen, C.G., 2018. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions. Food Chem. 269, 236-243 doi: 10.1016/j.foodchem.2018.06.107
|
Wang, Y., Zhou, Y., Wang, X.X., Ma, F., Xu, B.C., Li, P.J., Chen, C.G., 2020. Origin of high-pressure induced changes in the properties of reduced-sodium chicken myofibrillar protein gels containing CaCl2: physicochemical and molecular modification perspectives. Food Chem 319, 126535 doi: 10.1016/j.foodchem.2020.126535
|
Xiong, Y.L., 1994. Myofibrillar protein from different muscle fiber types: implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nutr. 34, 293-320 doi: 10.1080/10408399409527665
|
Yapar, A., Atay, S., Kayacier, A., Yetim, H., 2006. Effects of different levels of salt and phosphate on some emulsion attributes of the common carp (Cyprinus carpio L., 1758). Food Hydrocoll 20, 825-830 doi: 10.1016/j.foodhyd.2005.08.005
|
Yarnpakdee, S., Benjakul, S., Visessanguan, W., Kijroongrojana, K., 2009. Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocoll 23, 1779-1784 doi: 10.1016/j.foodhyd.2009.03.006
|
Zayas, J.F., 1997. Introduction. Functionality of Proteins in Food. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–5.
|
Zhou, X.X., Chen, H., Lyu, F., Lin, H.H., Zhang, Q., Ding, Y.T., 2019. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: effects of fat type and concentration. Food Hydrocoll 90, 433-442
|