Citation: | S. Chandra Sekhar, K. Karuppasamy, M. Vimal Kumar, D. Bijulal, N Vedaraman, Ravishankar Sathyamurthy. Rain tree (Samanea saman) seed oil: Solvent extraction, optimization and characterization[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 254-265. doi: 10.1016/j.jobab.2021.04.005 |
The present investigation reports the soxhlet assisted solvent extraction technique to derive the oil from seeds of the rain tree. The optimization of the factors affecting the extraction process has been carried out by Response Surface Methodology (RSM) technique, and a Box-Behnken Design (BBD) consisting of three process variables has been developed to optimize the yield of oil. Using the RSM technique, the predicted optimum oil yield of 11.15% at an optimized condition of powder weight of 20 g, volume of solvent of 380 mL, and extraction time of 6 h. The physiochemical properties of the oil showed liquid greenish-yellow with 0.88, 1.473 of specific gravity and refractive index, respectively. Similarly, the moisture content, free fatty acid, acid value, saponification value, iodine value, and peroxide value were found to be 0.16%, 13.615, 27.23, 187.1 mg KOH per g oil, 65.8 g I2 per 100 g, and 4.02 meq O2 per kg, respectively. From the obtained results, it was found that the extracted oil could be used for various applications.
Abdulrasheed, A., Arok, e U.O., Muazu, M.T., 2015. Characterization and utilization of castor been seed oil extract for production of medicated soap. Am. J. Eng. Res. 4, 67–72. http://www.ajer.org/papers/v4(12)/J04012067072.pdf
|
Adelola, O.B., 2012. Extraction and characterization of cottonseed (Gossypium) oil. Int. J. Basic Appl. Sci. 1, 384–388. doi: 10.17142/ijbas-2012.2.1.26
|
Agu, C.M., Menkiti, M.C., Ekwe, E.B., Agulanna, A.C., 2020. Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artif. Intell. Agric. 4, 1–11. http://www.sciencedirect.com/science/article/pii/S2589721720300064
|
Akintunde, A.M., Ajala, S.O., Betiku, E., 2015. Optimization of Bauhinia monandra seed oil extraction via artificial neural network and response surface methodology: a potential biofuel candidate. Ind. Crop. Prod. 67, 387–394. doi: 10.1016/j.indcrop.2015.01.056
|
Ali, M.A., Al-Hattab, T.A., Al-Hydary, I.A., 2015. Extraction of date palm seed oil (phoenix dactylifera) by soxhlet apparatus. Int. J. Adv. Eng. Technol. 8, 261–271. http://www.researchgate.net/publication/320735419_Extraction_of_Date_Palm_Seed_Oil_Phoenix_Dactylifera_by_Soxhlet_Apparatus/download
|
AOAC (Official Methods of Analysis), 1997. The Association of Official Analytical Chemists, 17th ed. Washington D.C., USA. AOAC
|
Awolu, O., 2013. Optimization of solvent extraction of oil from neem (Azadirachta indica) and its characterizations. J. Sci. Res. Rep. 2, 304–314. http://www.sciencedomain.org/uploads/1378367999-4946-Revised-manuscript_version1.pdf
|
Balaji, D., Mathevan Pillai, T., Gnanasekaran, K., Balachandar, M., Ravikumar, T.S., Sathish, S., Sathyamurthy, R., 2019. Dataset for compression ignition engine fuelled with corn oil methyl ester biodiesel. Data Brief27, 104683. http://www.researchgate.net/publication/336458974_Dataset_for_compression_ignition_engine_fuelled_with_corn_oil_methyl_ester_biodiesel/download
|
Banat, F., Pal, P., Jwaied, N., Al-Rabadi, A., 2013. Extraction of olive oil from olive cake using soxhlet apparatus. Am. J. Oil Chem. Technol. 1: 1–8. http://www.oalib.com/paper/2491786
|
Betiku, E., Adepoju, T.F., Omole, A.K., Aluko, S.E., 2012. Statistical approach to the optimization of oil extraction from beniseed (Sesamum indicum) oilseeds. J. Food Sci. Eng. 2: 351–357. http://www.researchgate.net/publication/263928633_Statistical_Approach_to_the_Optimization_of_Oil_Extraction_from_Beniseed_Sesamum_indicum_Oilseeds
|
Bharathwaaj, R., Nagarajan, P.K., Kabeel, A.E., Madhu, B., Mageshbabu, D., Sathyamurthy, R., 2018. Formation, characterization and theoretical evaluation of combustion of biodiesel obtained from wax esters of A. Mellifera. Alex. Eng. J. 57, 1205–1215. doi: 10.1016/j.aej.2017.03.021
|
Bhutada, P.R., Jadhav, A.J., Pinjari, D.V., Nemade, P.R., Jain, R.D., 2016. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind. Crop. Prod. 82, 74–80. doi: 10.1016/j.indcrop.2015.12.004
|
Bokhari, A., Chuah, L.F., Yusup, S., Ahmad, J., Aziz, H., 2015. Kapok seed oil extraction using soxhlet extraction method: optimization and parametric study. Aust. J. Basic Appl. Sci., 9, 429–443. http://www.researchgate.net/publication/299452643_Kapok_Seed_Oil_Extraction_using_Soxhlet_Extraction_Method_Optimization_and_Parametric_study
|
Box, G.E.P., Wilson, K.B., 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc. : Ser. B Methodol. 13, 1–38.
|
Capellini, M.C., Giacomini, V., Cuevas, M.S., Rodrigues, C.E.C., 2017. Rice bran oil extraction using alcoholic solvents: physicochemical characterization of oil and protein fraction functionality. Ind. Crop. Prod. 104, 133–143. doi: 10.1016/j.indcrop.2017.04.017
|
Delgado, D.C., Hera, R., Cairo, J., Orta, Y., 2014. Samanea saman, a multi-purpose tree with potentialities as alternative feed for animals of productive interest. Cuba. J. Agric. Sci. 48, 205–212. http://www.researchgate.net/publication/287276960_Samanea_saman_a_multi-purpose_tree_with_potentialities_as_alternative_feed_for_animals_of_productive_interest
|
Islam, M.N., Sabur, A., Ahmmed, R., Hoque, M.E., 2015. Oil extraction from pine seed (Polyalthia longifolia) by solvent extraction method and its property analysis. Procedia Eng. . 105, 613–618. doi: 10.1016/j.proeng.2015.05.039
|
Jisieike, C.F., Betiku, E., 2020. Rubber seed oil extraction: effects of solvent polarity, extraction time and solid-solvent ratio on its yield and quality. Biocatal. Agric. Biotechnol. 24, 101522. http://www.sciencedirect.com/science/article/pii/S1878818119316780
|
Kahla, N.E., SafeKordi, A.A., 2012. Evaluation of temperature & solvent effect on peach kernel oil extraction & determination & quantification of its fatty. J. Natl. Sci. Res. 2, 1–7.
|
Kaimal, V.K., Vijayabalan, P., Balachandar, M., Padmanaba Sundar, S., Sathyamurthy, R., 2020. Effect of using plastic nanofuel as a fuel in a light-duty diesel engine. Heat Transf. . 49, 726–742. doi: 10.1002/htj.21635
|
Karuppan, D., Muthu Manokar, A., Vijayabalan, P., Sathyamurthy, R., Madhu, B., Mageshbabu, D., Bharathwaaj, R., Jenoris Muthiya, S., 2020. Experimental investigation on pressure and heat release HCCI engine operated with chicken fat oil/diesel-gasoline blends. Mater. Today: Proc. . 32, 437–444. doi: 10.1016/j.matpr.2020.02.128
|
Kemerli-Kalbaran, T., Ozdemir, M., 2019. Multi-response optimization of oil extraction from pine nut (Pinus pinea L. ) by response surface methodology: extraction efficiency, physicochemical properties and antioxidant activity. LWT103, 34–43. doi: 10.1016/j.lwt.2018.12.067
|
Knothe, G., Phoo, Z.W.M.M., de Castro, M.E.G., Razon, L.F., 2015. Fatty acid profile of Albizia lebbeckand Albizia samanseed oils: presence of coronaric acid. Eur. J. Lipid Sci. Technol. 117, 567–574. doi: 10.1002/ejlt.201400393
|
Malacrida, C.R., Jorge, N., 2012. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz. Arch. Biol. Technol. 55, 127–134. doi: 10.1590/S1516-89132012000100016
|
Mani, S., Jaya, S., Vadivambal, R., 2007. Optimization of solvent extraction of Moringa (Moringa oleifera) seed kernel oil using response surface methodology. Food Bioprod. Process. 85, 328–335. doi: 10.1205/fbp07075
|
Martínez, M.L., Marín, M.A., Salgado Faller, C.M., Revol, J., Penci, M.C., Ribotta, P.D., 2012. Chia (Salvia hispanica L. ) oil extraction: study of processing parameters. LWT-Food Sci. Technol. 47, 78–82. doi: 10.1016/j.lwt.2011.12.032
|
Montgomery, D.C., 2012. Design and Analysis of Experiments. New Jersey: John Wiley & Sons.
|
Reshad, A.S., Tiwari, P., Goud, V.V., 2015. Extraction of oil from rubber seeds for biodiesel application: optimization of parameters. Fuel 150, 636–644. doi: 10.1016/j.fuel.2015.02.058
|
Sasikumar, C., Balamurugan, K., Jegadheeswaran, S., Sathyamurthy, R., 2020. Optimization of process parameter in the production of Jatropha Methyl Ester using response surface methodology. Biocatal. Agric. Biotechnol. 27, 101693. http://www.sciencedirect.com/science/article/pii/S1878818120303066
|
Sekhar, S., Karuppasamy, K., Vedaraman, N., Kabeel, A.E., Sathyamurthy, R., Elkelawy, M., Alm ElDin Bastawissi, H., 2018. Biodiesel production process optimization from Pithecellobium dulce seed oil: performance, combustion, and emission analysis on compression ignition engine fuelled with diesel/biodiesel blends. Energy Convers. Manag. 161, 141–154. doi: 10.1016/j.enconman.2018.01.074
|
Sekhar, S.C., Karuppasamy, K., Sathyamurthy, R., Elkelawy, M., Bastawissi, H.A.E.D., Paramasivan, P., Sathiyamoorthy, K., Edison, P., 2019. Emission analysis on compression ignition engine fueled with lower concentrations of Pithecellobium dulce biodiesel-diesel blends. Heat Transf. —Asian Res. 48, 254–269. doi: 10.1002/htj.21381
|
Somnuk, K., Eawlex, P., Prateepchaikul, G., 2017. Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agric. Nat. Resour. 51, 181–189. http://www.sciencedirect.com/science/article/pii/S2452316X17303393
|
Staples, G.W., Elevitch, C.R., 2006. Samanea saman (rain tree), ver. 2.1. In: Elevitch, C.R. (ed. ). Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources (PAR). Available at: www. traditionaltree. org.
|
Subramaniam, M., Solomon, J.M., Nadanakumar, V., Anaimuthu, S., Sathyamurthy, R., 2020. Experimental investigation on performance, combustion and emission characteristics of DI diesel engine using algae as a biodiesel. Energy Rep. . 6, 1382–1392. doi: 10.1016/j.egyr.2020.05.022
|
Sundar, P.S., Sathyamurthy, R., Chamkha, A.J., 2020. Influence of oxygen enrichment on performance, combustion, and emission characteristics of a stationary diesel engine fuelled with Calophyllum Inophyllum biodiesel blend. Asia-Pac. J. Chem. Eng. 15, e2472.
|
Umamaheshwari, P., Dinesh Sankar Reddy, P., 2016. Effect of operating parameters on extraction of oil from bitter gourd seeds: a kinetic and thermodynamic study. Int. J. Sci. Res. IJSR5, 1243–1246. http://www.ijsr.net/archive/v5i2/NOV161391.pdf
|
Velmurugan, R., Mayakrishnan, J., Induja, S., Raja, S., Nandagopal, S., Sathyamurthy, R., 2019. Comprehensive study on the effect of CuO nano fluids prepared using one-step chemical synthesis method on the behavior of waste cooking oil biodiesel in compression ignition engine. J. Therm. Sci. Eng. Appl. 11, 041003. http://www.onacademic.com/detail/journal_1000040905952210_abc9.html
|
Vinay, S., Gajra, G., Afroz, A., 2014. Extraction and characterization of industrially valuable oil from Eruca sativa (L. ) Mill. through FT-IR and GC-MS analysis. Am. J. Biol. Chem. 2, 23–28. http://www.openscienceonline.com/journal/archive2?journalId=712&paperId=1346
|
Yahaya, S., Giwa, S.O., Ibrahim, M., Giwa, A., 2016. Extraction of oil from Jatropha seed kernels: optimization and characterization. Int. J. Chemtech. Res. 9, 758–770. http://www.researchgate.net/publication/303909888_Extraction_of_Oil_from_Jatropha_Seed_Kernels_Optimization_and_Characterization/download
|
Zaher, F.A., El Kinawy, O.S., El Haron, D.E., 2004. Solvent extraction of jojoba oil from pre-pressed jojoba meal. Grasas Aceites55, 129–134.
|