Volume 6 Issue 4
Oct.  2021
Turn off MathJax
Article Contents
Lamia Zuniga Linan, Anne C. Mendonça Cidreira, Cláudia Quintino da Rocha, Fabrícia Farias de Menezes, George J de Moraes Rocha, Antônio E Macedo Paiva. Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 323-337. doi: 10.1016/j.jobab.2021.04.007
Citation: Lamia Zuniga Linan, Anne C. Mendonça Cidreira, Cláudia Quintino da Rocha, Fabrícia Farias de Menezes, George J de Moraes Rocha, Antônio E Macedo Paiva. Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 323-337. doi: 10.1016/j.jobab.2021.04.007

Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts

doi: 10.1016/j.jobab.2021.04.007
More Information
  • Corresponding author: E-mail address: lamiazuniga@yahoo.com.mx (Lamia Zuniga Linan)
  • Received Date: 2020-11-05
  • Accepted Date: 2020-12-01
  • Rev Recd Date: 2020-11-26
  • Publish Date: 2021-10-28
  • According to the National Company of Supplying (CONAB) in 2017 alone, the national production of acai pulp reached 219 855 t, equating to 180 million dollar (USD). Almost 85% of the weight of fruit is constituted by residual biomass, even though researches have highlighted important applications for this biomass, most of it is discarded as organic waste. Thus, it is relevant to envisage in-depth studies about how to use these residues, particularly regarding the environmental impact of its target destination. Nanocrystalline cellulose (CNC) and lignin are organic derivatives obtained through the physical-chemical treatment of lignocellulosic biomass. Both are abundant and currently considered as biopolymers because of their structural characteristics and their diverse applications in food and the medical field. This work presents the mass yields achieved and the physical-chemical characteristics of the lignocellulosic derivatives extracted from the fiber of the acai berry. A statistical design was used to define the influence of process variables as temperature, reaction time and fiber size on the yield of these byproducts. A maximum yield close to 64% of type I CNC, with 45% of crystallinity degree was achieved at the minimum condition of temperature and fiber size. Additionally, through rheological analysis, it was possible to predict the nanocrystal aspect ratios, ranging from 71 to 125. The extracted lignin was rich in methoxy groups, p-coumaryl alcohol and p-coumaric acid, and its structural unit's low state of aggregation can be an indication of low molecular weight, which envisions an appropriate use for this lignin to produce commodity chemicals.

     

  • loading
  • Baker, D.A., Rials, T.G., 2013. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130, 713-728 doi: 10.1002/app.39273
    Barros, N.B.D., Spacino, S.I., Bruns, R.E., 2003. How to do experiments: research and development in science and industry. UNICAMP, Campinas.
    Bercea, M., Navard, P., 2000. Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33, 6011-6016
    Boluk, Y., Lahiji, R., Zhao, L.Y., McDermott, M.T., 2011. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A: Physicochem. Eng. Aspects 377, 297-303
    Czaikoski, A., 2017. Study of the rheological behavior of cellulose nanofibers obtained by different methods Available at http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/322744/1/Czaikoski_Aline_M.pdf/.
    de Teixeira, E., de Oliveira, C.R., Mattoso, L.H.C., Corrêa, A.C., Paladin, P.D., 2010. Cotton nanofibers obtained under different conditions of acid hydrolysis. Polímeros 20, 264-268
    del Río, J.C., Lino, A.G., Colodette, J.L., Lima, C.F., Gutiérrez, A., Martínez, Á. T., Lu, F.C., Ralph, J., Rencoret, J., 2015. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy 81, 322-338
    Donnici, C., Vargas, F., Alves, L., Rodrigues, S., 2013. Process of obtaining cellulose nanocrystals through the hydrolysis reaction with alkaline agent, product and use. Federal University of Minas Gerais Patent BR n. 1020130223735. Available at https://busca.inpi.gov.br/pePI/servlet/ImagemDocumentoPdfController?CodDiretoria=200&NumeroID=719aa2984e9b4f01fa4cbbba550286082ea09796083689055413747a8109c39b&certificado=undefined&numeroProcesso=&ipasDoc=undefined&codPedido=1010235.
    dos Santos, G., Maia, G., de Sousa, P., da Costa, J., de Figuereiro, R., do Prado, G., 2008. Correlation between antioxidant activity and bioactive compounds of açaí (Euterpe Olerácea Mart. ) commercial pulps. Arch. Latinoam. Nutr 58, 187-192
    Fang, W., Yang, S., Wang, X.L., Yuan, T.Q., Sun, R.C., 2017. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19, 1794-1827
    FAPESP, 2017. Alternativas de uma fibra vegetal. Revista Fapesp. Available at: https://revistapesquisa.fapesp.br/alternativas-de-uma-fibra-vegetal/.
    Gouveia, E.R., Nascimento, R.T.D., Souto-Maior, A.M., de Moraes Rocha, G.J., 2009. Validation of methodology for the chemical characterization of sugar cane bagasse. Quim. Nova 32, 1500-1503 doi: 10.1590/S0100-40422009000600026
    Iotti, M., Gregersen, Ø. W., Moe, S., Lenes, M., 2011. Rheological studies of microfibrillar cellulose water dispersions. J. Polym. Environ. 19, 137-145 doi: 10.1007/s10924-010-0248-2
    Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497-4559
    Iwamoto, S., Lee, S.H., Endo, T., 2014. Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym. J. 46, 73-76 doi: 10.1038/pj.2013.64
    Janković, A., Eraković, S., Ristoscu, C., Mihailescu, N., Duta, L., Visan, A., Stan, G.E., Popa, A.C., Husanu, M.A., Luculescu, C.R., Srdić, V.V., Janaćković, D., Mišković-Stanković, V., Bleotu, C., Chifiriuc, M.C., Mihailescu, I.N., 2015. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J. Mater. Sci. : Mater. Med. 26, 1-14
    Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R., 2015. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935-969 doi: 10.1007/s10570-015-0551-0
    Kai, D., Jiang, S., Low, Z.W., Loh, X.J., 2015. Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. J. Mater. Chem. B 3, 6194-6204 doi: 10.1039/C5TB00765H
    Li, M.C., Wu, Q.L., Song, K.L., Lee, S., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure-morphology-rheology relationships. ACS Sustainable Chem. Eng. 3, 821-832 doi: 10.1021/acssuschemeng.5b00144
    Menezes, F.F., 2018. Characterization of enzymatic hydrolysis residues from sugarcane bagasse and lignoboots kraft lignin from eucalyptus and of their phenolic resins Available at http://repositorio.unicamp.br/jspui/handle/REPOSIP/331890.
    Menezes, F.F., da Silva Fernandes, R.H., de Moraes Rocha, G.J., Maciel Filho, R., 2016. Physicochemical characterization of residue from the enzymatic hydrolysis of sugarcane bagasse in a cellulosic ethanol process at pilot scale. Ind. Crop. Prod. 94, 463-470
    Mradu, G., Saumyakanti, S., Sohini, M., Arup, M., 2012. HPLC Profiles of standard phenolic compounds present in medicinal plants. Int. J. Pharmacogn. Res. 4, 162-167
    Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R., 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B: Eng. 75, 176-200
    Pereira, E., Rodrigues, C.V., 2013. Açaí kernel coal (Euterpe Olerácea) chemically modified with sodium hydroxide (NaOH) and its efficiency in the treatment of drinking water. Moju Science Club (CCIM) Annals, 27. Available at http://estatico.cnpq.br/portal/premios/2013/pjc/imagens/publicacoes/ganhadores/EnsinoMedio/1Lugar_1671_Edivan_Nascimento_Pereira.pdf.
    Pereira, S., Maciel, A., Santos, D., Oliveira, J., 2014. Metal removal from surface waters using açaí charcoal (Euterpe Olerácea). In: International Conference on Engineering and Technology Education Annals, 13. Available at.
    Pessoa, J.D.C., Arduin, M., Martins, M.A., de Carvalho, J.E.U., 2010. Characterization of açaí (E. oleracea) fruits and its processing residues. Braz. Arch. Biol. Technol. 53, 1451-1460
    Pye, E., Lora, J., 1991. The Alcell process. A proven alternative to kraft pulping. Tappi J 74, 113-118
    Revol, J.F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G., 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170-172
    Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83-92
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2012. Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP) Available at https://www.nrel.gov/docs/gen/fy13/42618.pdf/.
    Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C., 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15, 1634-1643 doi: 10.1021/bm500015j
    Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962-979 doi: 10.18331/brj2019.6.2.3
    Wu, Q., Li, X., Li, Q., Wang, S., Luo, Y., 2019. Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: influence of aspect ratio distribution and ionic strength. Polymers 11, 781-792 doi: 10.3390/polym11050781
    Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D., Wiesenborn, D.P., 2013. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5, 2999-3009 doi: 10.1021/am302624t
    Yuyama, L.K.O., Aguiar, J.P.L., Silva Filho, D.F., Yuyama, K., de Jesus Varejão, M., Fávaro, D.I.T., Vasconcellos, M.B.A., Pimentel, S.A., Caruso, M.S.F., 2011. Physicochemical characterization of açaí juice of Euterpe precatoria Mart. From different Amazonian ecosystems. Acta Amaz 41, 545-552 doi: 10.1590/S0044-59672011000400011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (314) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return