Citation: | Ping Yeong Siew, San Chan Yen, Chiat Law Ming, Kim Ung Ling Jordy. Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 43-51. doi: 10.1016/j.jobab.2021.09.002 |
Palm fatty acid distillate (PFAD), a by-product of refining process of crude palm oil can be used as a potential feedstock for biodiesel production. However, the application of palm oil-based biodiesel is often hinder by its poor cold flow properties (CFP). Biodiesel fuel with poor CFP may crystallize and result in clogging of fuel lines, filters and injectors that cause engine operability problems. For that, a vacuum distillation method was designed and its feasibility and efficiency in improving the CFP was examined. A total of 13.60wt% of total saturated fatty acid methyl esters were successfully removed from the PFAD biodiesel, resulting in the improvement of the cloud point (CP), cold filter plugging point (CFPP) and pour point (PP) of PFAD biodiesel from 20 ℃, 19 ℃, and 15 ℃ to 13 ℃, 11 ℃, and 9 ℃, respectively. It is remarkable that the improved CFPP satisfied the requirements for grade C summer biodiesel for temperate climates in EN 14212 standard. Additionally, Sarin (UFAME) empirical correlation was evaluated and it was found to have a good prediction of CFP for PFAD biodiesel, with lower than 2 ℃ deviation.
Abou-Arab, E., Abu-Salem, F., 2010. Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. J. Food Dairy Sci. 1, 209-224. doi: 10.21608/jfds.2010.82109
|
Adepoju, T.F., 2020. Optimization processes of biodiesel production from pig and neem (Azadirachta indica a. Juss) seeds blend oil using alternative catalysts from waste biomass. Ind. Crops Prod. 149, 112334. doi: 10.1016/j.indcrop.2020.112334
|
Akinfalabi, S.I., Rashid, U., Yunus, R., Taufiq-Yap, Y.H., 2017. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew. Energy 111, 611-619. doi: 10.1016/j.renene.2017.04.056
|
Ali, O.M., Mamat, R., Abdullah, N.R., Abdullah, A.A., 2016. Analysis of blended fuel properties and engine performance with palm biodiesel-diesel blended fuel. Renew. Energy 86, 59-67. doi: 10.1016/j.renene.2015.07.103
|
Ali, O.M., Mamat, R., Faizal, C.K.M., 2012. Palm biodiesel production, properties and fuel additives. Int. Rev. Mech. Eng. 6, 1573-1580.
|
Altaie, M.A.H., Janius, R.B., Rashid, U., Taufiq Yap, Y.H., Yunus, R., Zakaria, R., 2015. Cold flow and fuel properties of methyl oleate and palm-oil methyl ester blends. Fuel 160, 238-244. doi: 10.1016/j.fuel.2015.07.084
|
Aqar, D.Y., Abbas, A.S., Patel, R., Mujtaba, I.M., 2021. Optimisation of semi-batch reactive distillation column for the synthesis of methyl palmitate. Sep. Purif. Technol. 270, 118776. doi: 10.1016/j.seppur.2021.118776
|
Baharudin, K.B., Abdullah, N., Taufiq-Yap, Y.H., Derawi, D., 2020. Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate. J. Clean. Prod. 274, 122850. doi: 10.1016/j.jclepro.2020.122850
|
Bonhorst, C.W., Althouse, P.M., Triebold, H.O., 1948. Esters of naturally occurring fatty acids-Physical properties of methyl, propyl, and isopropyl esters of C6 to C18 saturated fatty acids. Ind. Eng. Chem. 40, 2379-2384. doi: 10.1021/ie50468a031
|
Cermak, S.C., Evangelista, R.L., Kenar, J.A., 2012. Distillation of natural fatty acids and their chemical derivatives. InTech, Philippines.
|
Cukalovic, A., Monbaliu, J.C.M., Eeckhout, Y., Echim, C., Verhé, R., Heynderickx, G., Stevens, C.V., 2013. Development, optimization and scale-up of biodiesel production from crude palm oil and effective use in developing countries. Biomass Bioenergy 56, 62-69. doi: 10.1016/j.biombioe.2013.04.015
|
Dimian, A.C., Omota, F., Kiss, A.A., 2007. Process for fatty acid methyl esters by dual reactive distillation. Computer Aided Chemical Engineering. Amsterdam: Elsevier, pp. 1307-1312.
|
Dunn, R.O., Shockley, M.W., Bagby, M.O., 1996. Improving the low-temperature properties of alternative diesel fuels: vegetable oil-derived methyl esters. J. Am. Oil Chem. Soc. 73, 1719-1728. doi: 10.1007/BF02517978
|
Edith, O., Janius, R.B., Yunus, R., 2012. Factors affecting the cold flow behaviour of biodiesel and methods for improvement-a review. Pertanika J. Sci. Technol. 20, 1-14.
|
Elias, R.C., Senra, M., Soh, L., 2016. Cold flow properties of fatty acid methyl ester blends with and without triacetin. Energy Fuels 30, 7400-7409. doi: 10.1021/acs.energyfuels.6b01334
|
Ho, W.W.S., Ng, H.K., Gan, S.Y., Chan, W.L., 2015. Ultrasound-assisted transesterification of refined and crude palm oils using heterogeneous palm oil mill fly ash supported calcium oxide catalyst. Energy Sci. Eng. 3, 257-269. doi: 10.1002/ese3.56
|
Iakovlieva, A., Boichenko, S., Lejda, K., Vovk, O., Shkilniuk, I., 2017. Vacuum distillation of rapeseed oil esters for production of jet fuel bio-additives. Procedia Eng 187, 363-370. doi: 10.1016/j.proeng.2017.04.387
|
Li, Y.H., Ye, B., Shen, J.W., Tian, Z., Wang, L.J., Zhu, L.P., Ma, T., Yang, D.Y., Qiu, F.X., 2013. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under Microwave Chemical Reactor. Bioresour. Technol. 137, 220-225. doi: 10.1016/j.biortech.2013.03.126
|
Lokman, I.M., Rashid, U., Zainal, Z., Yunus, R., Taufiq-Yap, Y.H., 2014. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate. J. Oleo Sci. 63, 849-855. doi: 10.5650/jos.ess14068
|
Lv, P., Cheng, Y.F., Yang, L.M., Yuan, Z.H., Li, H.W., Luo, W., 2013. Improving the low temperature flow properties of palm oil biodiesel: addition of cold flow improver. Fuel Process. Technol. 110, 61-64. doi: 10.1016/j.fuproc.2012.12.014
|
Murta, A.L.S., Freitas, M.A.V.D., Ferreira, C.G., da Costa Lima Peixoto, M.M., 2021. The use of palm oil biodiesel blends in locomotives: an economic, social and environmental analysis. Renew. Energy 164, 521-530. doi: 10.1016/j.renene.2020.08.094
|
Park, J.Y., Kim, D.K., Lee, J.P., Park, S.C., Kim, Y.J., Lee, J.S., 2008. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour. Technol. 99, 1196-1203. doi: 10.1016/j.biortech.2007.02.017
|
Pourhoseini, S.H., Namvar-Mahboub, M., Hosseini, E., Alimoradi, A., 2021. A comparative exploration of thermal, radiative and pollutant emission characteristics of oil burner flame using palm oil biodiesel-diesel blend fuel and diesel fuel. Energy 217, 119338. doi: 10.1016/j.energy.2020.119338
|
Rashed, M.M., Kalam, M.A., Masjuki, H.H., Mofijur, M., Rasul, M.G., Zulkifli, N.W.M., 2016. Performance and emission characteristics of a diesel engine fueled with palm, Jatropha, and Moringa oil methyl ester. Ind. Crops Prod. 79, 70-76. doi: 10.1016/j.indcrop.2015.10.046
|
Sarin, A., Arora, R., Singh, N.P., Sarin, R., Malhotra, R.K., Kundu, K., 2009. Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point. Energy 34, 2016-2021. doi: 10.1016/j.energy.2009.08.017
|
Sarin, A., Arora, R., Singh, N.P., Sarin, R., Malhotra, R.K., Sarin, S., 2010. Blends of biodiesels synthesized from non-edible and edible oils: effects on the cold filter plugging point. Energy Fuels 24 1996-2001. doi: 10.1021/ef901131m
|
Sia, C.B., Kansedo, J., Tan, Y.H., Lee, K.T., 2020. Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: a review. Biocatal. Agric. Biotechnol. 24, 101514.
|
Sierra-Cantor, J.F., Guerrero-Fajardo, C.A., 2017. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review. Renew. Sustain. Energy Rev. 72, 774-790.
|
Soly Peter, A., Alias, M.P., Iype, M.P., Jolly, J., Sankar, V., Joseph Babu, K., Baby, D.K., 2021. Optimization of biodiesel production by transesterification of palm oil and evaluation of biodiesel quality. Mater. Today: Proc. 42, 1002-1007. doi: 10.1016/j.matpr.2020.11.995
|
Su, Y.C., Liu, Y.A., Diaz Tovar, C.A., Gani, R., 2011. Selection of prediction methods for thermophysical properties for process modeling and product design of biodiesel manufacturing. Ind. Eng. Chem. Res. 50, 6809-6836.
|
Verma, P., Sharma, M.P., Dwivedi, G., 2016. Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Rep. 2, 8-13. http://www.econstor.eu/bitstream/10419/187834/1/1-s2.0-S2352484715300019-main.pdf
|
Xu, H., Lee, U., Wang, M., 2020. Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel. Renew. Sustain. Energy Rev. 134, 110144.
|
Yeong, S.P., Law, M.C., You, K.Y., Chan, Y.S., Lee, V.C.C., 2019. A coupled electromagnetic-thermal-fluid-kinetic model for microwave-assisted production of Palm Fatty Acid Distillate biodiesel. Appl. Energy 237, 457-475.
|
Yusup, S., Khan, M., 2010. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics. Biomass Bioenergy 34, 1523-1526.
|